@j FACULTY OF
BIOSCIENCE ENGINEERING

Calculus

Prof. dr. ir. Jan Baetens
M.Sc. Elien Van de Walle
M.Sc. An Schelfaut

Academic year 2019-2020

GHENT
UNIVERSITY

R

WY
T e
R e
ek
ALY
N
Ly
X







Calculus

Prof. dr. ir. Jan M. Baetens

M.Sc. Elien Van de Walle
M.Sc. An Schelfaut



The cover photo represents a hyperbolic paraboloid whose standard equation is given by

x2 y2

z= .
a? b2

(© 2019 Jan M. Baetens.

Licensed to the public under Creative Commons Attribution-Noncommercial 4.0 International Public Li-
cense. The course is largely based on chapters from Precalculus by Carl Stitz and Jeff Zeager, chapters
from APEX Calculus by Gregory Hartman et al. and own material.

(@0l




Preface

The purpose of this course is to present mathematics as the science of deductive reasoning and not
as the art of manipulation. Unfortunately, many students feel mathematics is incomprehensible and
is riddled with complex and abstract jargon. Our goal is to impose a lasting understanding of and
appreciation for calculus on the student. Our course is intended to give the student an understanding
of what calculus is truly about. It does not take more intelligence than that of a parrot to be able to
go through a list of theorems and equations; but only when one understands their origins can one
correctly and confidently apply them in the real world.

The over-emphasis on the calculator and foremostly the computer is definitely a point of confusion for
the student. The computer is only a time-saving machine whose usefulness depends on the knowledge
of the user. We do admit the computer is a remarkable machine, and we will make use of it whenever
appropriate, yet it is this fascination that gives students a false sense of what they are doing. The
confidence gained from all the correct answers leads to an inseparable dependence where the student
is absolutely helpless without it.

Throughout the textbook we constantly refer to science and engineering. The purpose of this is to
show how the scientific method applies to all disciplines and to understand that mathematics is an
expression of one’s observations and hypothesis. For that reason, several examples and exercises
were chosen because of their relevance in reality, such that the reader can get a good feel of why and
how this course is so important for future engineers. Note that because of its engineering viewpoint, we
always indicate the dimensions of the used base quantities, being mass [M], time [T], temperature [@]
and length [L]. Besides, throughout this course we include the icon @ in the margin of the course notes
to indicate that some interactive content is available on Minerva related to the topic under discussion.
At the end of every chapter one can find an extensive list of exercises linked to the topics discussed in
the corresponding chapter.

Even though much time and efforts have been spent in compiling this text, it cannot be free of errors,
and the authors would be grateful if these would be reported to them so that the quality of this text
can be improved even further.

Finally, it goes without saying that many people have contributed to this course in addition to its
authors, namely, Demir Ali Kdse, Lander De Visscher, Tinne De Boeck and Ruth Van den Driessche.



Ghent, September 20, 2019

The authors
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Nature laughs at the difficulties of integration.

— Pierre-Simon Laplace —

12

Integration

We have spent considerable time considering the derivatives of a function and their applications. In
the following chapters, we are going to starting thinking in the other direction. That is, given a function
f(x), we are going to consider functions F(x) such that F’(x) = f(x). These functions will help us
compute area, volume, mass, force, pressure, work, and much more.

12.1 Antiderivatives and (in)definite integration

12.1.1 Antiderivatives and indefinite integration

Given a function y = f(x), a differential equation (differentiaalvergelijking) is one that incorporates
y, X, and the derivatives of y. For instance, a simple differential equation is:

y' =2x.
Solving a differential equation amounts to finding a function y that satisfies the given equation. Take a
moment and consider that equation; can you find a function y such that y’ = 2x?

Hopefully one was able to come up with at least one solution: y = x2. Finding another may have
seemed impossible until one realizes that a function like y = x2 + 1 also has a derivative of 2x. Once
that discovery is made, finding yet another is not difficult; the function y = x2 + 123456789 also
has a derivative of 2x. The differential equation y’ = 2x has many solutions. This leads us to some
definitions.

Definition 12.1 (Antiderivatives and indefinite integrals)
Let a function f(x) be given. An antiderivative (primitieve functie) of f(x) is a function F(x) such
that F/(x) = f(x).
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The set of all antiderivatives of f(x) is the indefinite integral (onbepaalde integraal) of f, de-
noted by

ff(x) dax.

Note that we refer to an antiderivative of f, as opposed to the antiderivative of f, since there is always
an infinite number of them. We often use upper-case letters to denote antiderivatives. Besides, know-
ing one antiderivative of f allows us to find infinitely more, simply by adding a constant. Not only does
this give us more antiderivatives, it gives us all of them.

Theorem 12.1 (Antiderivative forms)
Let F(x) and G(x) be antiderivatives of f(x) on an interval I. Then there exists a constant C such
that, onI,

Given a function f defined on an interval I and one of its antiderivatives F, we know all antiderivatives
of f on I have the form F(x) + C for some constant C. Using Definition 12.1, we can say that

Jf(x) dx =F(x)+C.

The integration symbol, f is in reality an elongated S, representing summing. We will later see how
sums and antiderivatives are related. The function we want to find an antiderivative of is called the
integrand (integrandum). It contains the differential of the variable we are integrating with respect

to.
Let us now use our notice to evaluate
fsin(x) ax.
Essentially, this means that we should find all functions F(x) such that F/(x) = sin(x). Of course,
some thought leads us to one solution: F(x) = —cos(x), because C%((— cos(x)) = sin(x). The indefinite

integral of sin(x) is thus —cos(x), plus a constant of integration C. So:

J. sin(x) dx =—cos(x) +C.

To fully understand what is happening, it is important to realise that the process of antidifferentiation
is really solving a differential question. The integral

Jsin(x) dx

presents us with a differential, dy = sin(x) dx. It is asking: What is y? We found lots of solutions, all of

the form y = —cos(x) +C.
J.sin(x) dx as J.dy.

This is asking: “What functions have a differential of the form dy?” The answer is “Functions of the
form y + C, where C is a constant.” What is y? We have lots of choices, all differing by a constant; the
simplest choice is y = —cos(x).

Letting dy = sin(x) dx, rewrite
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In Mathematica, we can use the command Integrate to evaluate an indefinite integral. For instance,
J(3x2 +4x+5) dx.

can be evaluated as follows.

In[19]:= Integrate[3*x"2+4x*xx+5, x]

out[19]=  5x +2x%2 +x3

We can also see that taking the derivative of our answer returns the function in the integrand. Thus

we can say that:
d
- ( | £00 dx) — Fx).

Differentiation undoes the work done by antidifferentiation.

Taking into account the lists of derivatives of algebraic and transcendental functions presented in
Chapter 9, we may now state some important antiderivatives. We easily see that

Jde_C,
fldx:fdx:erC,

from which we can infer the following more general integral rule:

and

1
fx” dx = ——x"t1 4 C,
n+1

for n #—1.

For what concerns the exponential and logarithmic functions, we get the following derivative functions:

. fex dx =e*+C,

1
° Ja" dx = a*+C,
In(a)

1
° J—dx—ln|x|+C,
X

while for the trigonometric and hyperbolic functions we get:

. fsin(x) dx = —cos(x) +C . Jsinh(x) dx = cosh(x) +C

. fcos(x) dx =sin(x) +C Jcosh ) dx = sinh(x) +C

. fsecz(x) dx =tan(x)+C fcosh dx = tanh(x) +C
. Jcscz(x) dx =—cot(x) +C fsmh dx = —coth(x) +C
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Besides, we have the following properties, which are completely in line with those for derivatives
(Theorem 9.3)

Theorem 12.2 (Properties of the antiderivative)
Let f and g be differentiable on an open interval I and let k be a real number. Then:

1. Sum/Difference rule:

J(f(x) +g(x)) dx = ff(x) dx:l:Jg(x) dx. (12.1)

2. Constant multiple rule:

ka(x) dx—kff(x) ax. (12.2)

For the sake of illustration, We will prove the sum rule. The proofs of the other properties proceed in a
similar way.

Suppose that F(x) is an anti-derivative of f(x) and that G(x) is an anti-derivative of g(x). So we have
that F/(x) = f(x) and G’(x) = g(x). Basic properties of derivatives also tell us that

(F)+G(x)) = F (x) +G (x) =f (x) + g (x),

and so F(x) + G(x) is an anti-derivative of f(x) + g(x). In other words,
ff(x)Jrg(x) dx:F(x)+G(x)+C:ff(x) dx+fg(x) ax.

In Section 9.1.4 we saw that the derivative of a position function gave a velocity function, and the
derivative of a velocity function describes acceleration. We can now go the other way: the antideriva-
tive of an acceleration function gives a velocity function, etc. While there is just one derivative of a
given function, there are infinitely many antiderivatives. Therefore we cannot ask “What is the velocity
of an object whose acceleration is —32m/s2?”, since there is more than one answer.

We can find the answer if we provide more information with the question, as done in the following
example. Often the additional information comes in the form of an initial value, a value of the function
that one knows beforehand.

Example 12.1
The acceleration due to gravity of a falling object is —9 m/s2. At time t = 3, a falling object had a
velocity of —10 m/s. Find the equation of the object’s velocity.

Solution

We want to know a velocity function, v(t). We know two things:

e The acceleration, i.e., v/(t) =—9, and

e the velocity at a specific time, i.e., v(3) =—10.

Using the first piece of information, we know that v(t) is an antiderivative of v/(t) = —9. So we
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begin by finding the indefinite integral of —9:

Jv’(t) dt_f(—9) dt =—9t +C = v(t).

Now we use the fact that v(3) = —10 by plugging in this point in the equation we just got for v(t):

for which it directly follows that C = 37.

Thus v(t) = =9t + 37. We can use this equation to understand the motion of the object: when
t = 0, the object had a velocity of v(0) = 37 m/s. Since the velocity is positive, the object was
moving upward.

In the remainder of this section, we will see how position and velocity are unexpectedly related by the
areas of certain regions on a graph of the velocity function.

12.1.2 The definite integral

We start with an easy problem. An object travels in a straight line at a constant velocity of 5m/s for 10
seconds. How far away from its starting point is the object?

Since, we have that Distance = Rate x Time, it follows that this distance is 50 metres. This solution can
be represented graphically. Consider Figure 12.1(a), where the constant velocity of 5m/s is graphed on
the axes. Shading the area under the line from t = 0 to t = 10 gives a rectangle with an area of 50
square units; when one considers the units of the axes, we can say this area represents 50 m.

Now consider a slightly harder situation (and not particularly realistic): an object travels in a straight
line with a constant velocity of 5m/s for 10 seconds, then instantly reverses course at a rate of 2m/s
for 4 seconds. How far away from the starting point is the object - what is its displacement?

Here, we get:
Distance =5-10+(—=2)-4=42m.

Hence the object is 42 metres from its starting location.

y(m/s)

5 10
(a) (b)

Figure 12.1: The total displacement of an object travelling in a straight line at a constant velocity of 5m/s for 10
seconds (a) and an object travelling a straight line with a constant velocity of 5m/s for 10 seconds, and then
instantly reversing course at a rate of 2m/s for 4 seconds (b).
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We can again depict this situation graphically. In Figure 12.1(b) we have the velocities graphed as
straight lines on [0, 10] and [10, 14], respectively. The displacement of the object is given by

Area above the t-axis — Area below the t-axis,

which is easy to calculate as 50— 8 = 42 metres.

These examples do not prove a relationship between area under a velocity function and displacement,
but it does imply a relationship exists. Section 12.3 will fully establish fact that the area under a
velocity function is displacement.

Anyhow, given a graph of a function y = f(x), we will find that there is great use in computing the area
between the curve y = f(x) and the x-axis. Because of this, we need to define some terms.

Definition 12.2 (The definite integral, total signed area)
Let y = f(x) be defined on a closed interval [a,b]. The total signed area from x = a to x = b
between f and the x-axis is:

(area under f and above the x-axis on [a, b]) — (area above f and under the x-axis on [a, b]).

The definite integral (bepaalde integraal) of f on [a, b] is the total signed area of f on [a, b],
denoted

b
| £60 ax.

where a and b are the bounds of integration.

By our definition, the definite integral gives the signed area under f. We usually drop the word signed
when talking about the definite integral, and simply say the definite integral gives the area under f or,
more commonly, the area under the curve. The indefinite integral and definite integral are very much
related, as we will see in Section 12.3.

Let us now practice this definition.

Example 12.2

Consider the function f given in Figure 12.2.

y
A
1

> X

Figure 12.2: A graph of f(x) in Example 12.2.
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Find:

3 5 1

1. ff(x) ax 3. ff(x) dx 5. ff(x) dx
0 0 1
5 3

2. ff(x) dx 4 f5f(x) dx
3 0

Solution

1. This definite integral is the area under f on the interval [0, 3]. This region is a triangle, so the
area is

3
Jf(X) dx = %(3)(1) =1.5.
0

2. This definite integral represents the area of the triangle found under the x-axis on [3, 5]. The
areais 1/2(2)(1) =1; since it is found under the x-axis, this is negative area. So,

5
| £60 ax -
3

3. This definite integral is the total signed area under f on [0, 5]. Thisis 1.5+ (—1) = 0.5.

4. This definite integral is the area under 5f on [0, 3]. Again, the region is a triangle, with height

5 times that of the height of the original triangle. Thus the area is
? 1
J 5f(x) dx = 5(15)(1) =17.5.
0

5. This definite integral is the area under f on the interval [1, 1]. This describes a line segment,
not a region; it has no width. Therefore the area is 0.

This example illustrates some of the properties of the definite integral, listed in the following theorem.

Theorem 12.3 (Properties of the definite integral)
Let f and g be defined on a closed interval I that contains the values a, b and ¢, and let k be a
constant. The following hold:

a
1ff dx =0,
a

2. | fx dx+ff dx_Jf()dx,

Q%c—
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b a
3. aff(x) dx :—bff(x) ax,

The proofs of these properties will be provided at the end of the next section once we have a better
understanding of definite integrals through the conceptualisation of Riemann sums.

The area definition of the definite integral allows us to use geometry to compute the definite integral
of some simple functions.

Example 12.3

Evaluate the following definite integrals:

5 3
1. J(Zx—4) dx 2. Jv9—x2 ax.
22 =3

Solution

1. It is useful to sketch the function in the integrand, as shown in Figure 12.3(a). We see we
need to compute the areas of two regions, which we have labelled R; and R,. Both are
triangles, so the area computation is straightforward:

n . L 1
11 5(4)(8) =16 R2: =(3)6=9.

Region R lies under the x-axis, hence it is counted as negative area, so
5
J(Zx—4) dx=-16+9=-7.
-2

We may check this answer in Mathematica as follows

In[20]:= Integrate[2*x-4, x,-2,5]

out[20]= -7
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» <
» <
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ul

R

2 > 5 P X
R1

(_21 _8) > X
10

(@) (b)

Figure 12.3: A graph of f(x) = 2x—4 in (a) and f(x) = V9 —x2 in (b), from Example 12.3.

2. Recognize that the integrand of this definite integral describes a half circle, as sketched in
Figure 12.3(b), with radius 3. Thus the area is:

2

3

1 9
J V9—x2 dx = Enr2 = —TI.
=3

12.2 Riemann sums

In our previous examples, we have either found the areas of regions that have nice geometric shapes
or the areas were given to us. But what is, for instance, the area of a region below y = x2? The function
y = x2 is relatively simple, yet the shape it defines has an area that is not simple to find geometrically.
In this section we will explore how to find the areas of such regions.

12.2.1 Approximating areas

Consider the region given in Figure 12.4, which is the area under y = 4x—x? on [0,4]. What is the
signed area of this region - i.e., what is f§(4x—x2) dx? We start by approximating. We can surround
the region with a rectangle with height and width of 4 and find the area is approximately 16 square
units. This is obviously an over-approximation; we are including area in the rectangle that is not under
the parabola.

We have an approximation of the area, using one rectangle. How can we refine our approximation to
make it better? The key to this section is this answer: use more rectangles. Let us use 4 rectangles
with an equal width of 1. This partitions the interval [0, 4] into 4 subintervals, [0, 1], [1,2], [2, 3] and
[3,4]. On each subinterval we will draw a rectangle.

There are three common ways to determine the height of these rectangles: the left hand rule (/ink-
erhand regel), the right hand rule (rechterhand regel), and the midpoint rule (midpoint regel). The
left hand rule says to evaluate the function at the left-hand endpoint of the subinterval and make the
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-
-

RHR MPR LHR OTHER

Figure 12.4: A graph of f(x) = 4x—x? and approximating f§(4x—x2) dx using rectangles.

rectangle that height. In Figure 12.4, the rectangle drawn on the interval [2, 3] has height determined
by the left hand rule (LHR); it has a height of f(2).

The right hand rule (RHR) says the opposite: on each subinterval, evaluate the function at the right
endpoint and make the rectangle that height. In Figure 12.4, the rectangle drawn on [0, 1] is drawn
using f(1) as its height. The midpoint rule (MPR) says to evaluate the function at the midpoint of each
subinterval, and to make the rectangle that height. The rectangle drawn on [1, 2] was made using the
midpoint rule, with a height of f(1.5).

These are the three most common rules for determining the heights of approximating rectangles,
but one is not forced to use one of these three methods. The rectangle on [3,4] has a height of
approximately f(3.53), very close to the midpoint rule. It was chosen so that the area of the rectangle
is exactly the area of the region under f on [3, 4].

The following example will put these rules into practice.

Example 12.4

Approximate the value of
4

f(4x—x2) dx
0

using the left hand rule, the right hand rule, and the midpoint rule, using 4 equally spaced subin-
tervals.

Solution

We break the interval [0, 4] into four subintervals as before. In Figure 12.5(a) we see 4 rectangles
drawn on f(x) = 4x— x? using the left hand rule. The areas of the rectangles are given in each
figure.

Note how in the first subinterval, [0, 1], the rectangle has height f(0) = 0. We add up the areas of
each rectangle (heightxwidth) for our left hand rule approximation:

f(O)-1+f(1)-1+f(2)-14+f(3)-1=0+3+4+3=10.
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Figure 12.5(b) shows 4 rectangles drawn under f using the right hand rule; note how the [3, 4]
subinterval has a rectangle of height 0.

In this example, these rectangles seem to be the mirror image of those found in Figure 12.5(a).
This is because of the symmetry of our shaded region. Our approximation gives the same answer
as before, though calculated a different way:

F(1)-14F(2)-1+f(3)-1+f(4)-1=3+4+3+0=10.

Figure 12.5(c) shows 4 rectangles drawn under f using the midpoint rule. This gives :
f(0.5)-1+f(1.5)-1+f(2.5)-1+f(3.5)-1=1.75+3.75+3.75+1.75 =11.

Our three methods provide two approximations, namely 10 and 11.

Figure 12.5: Approximating f:(4x—x2) dx in Example 12.4 using the left hand rule (a), the right hand
rule (b) and the midpoint rule (c).

It is hard to tell at this moment which is a better approximation. We can continue to refine our approx-
imation by using more rectangles.



12 INTEGRATION 426

12.2.2 Riemann sums

Consider again fg(4x—x2) dx. We divide or partition the number line of [0, 4] into 16 equally spaced
subintervals. We denote 0 as x31 , so in general, we have

Xi=X1+ (i—1)Ax,

where i=1,2,...,16 For the sake of simplicity, we will often write Ax = Ax;, where Ax; is the width of
the i ™ subinterval, whenever the width of the subintervals is the same.

Given any subdivision of [0, 4], the first subinterval is [x1, x2]; the second is [x2, x3]; the ith subinterval
is [xi,xi+1]. Hence, when using the left hand rule, the height of the it rectangle will be f(x;). When
using the right hand rule, the height of the ith rectangle will be f(x;;1), and finally, when using the
midpoint rule, the height of the i t" rectangle will be

Xi+Xi+1
5=)
We illustrate this in the next example.
Example 12.5
Approximate
4
f(4x—x2) dx
0

using the right hand rule with 16 and 1000 equally spaced intervals.

Solution

Using 16 equally spaced intervals and the right hand rule, we can approximate the definite inte-
gral as

16
Zf(xi+1)Ax,
=1

where we have Ax =4/16 = 0.25. Moreover, since x1 = 0, we have

Xip1=0+((i+1)—1)Ax
= [AX.

Using summation formulas, we may now consider:

4
16 16
f(4x—x2) ax = Zf(le)Ax = Zf(iAx)Ax
5 i=1 i=1
16 16

= A4iAX — (IMX)2)Ax = > (4iAX2 —i2AX3
( (iAx)
' i-1

Il
-

16 16
= (48x2) > i—ax3 D 2 (12.3)
i=1 i=1

16-17 16(17)(33
e 187)(33)

= (4Ax?) =10.625 (Ax =0.25)
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(12.4)

We were able to sum up the areas of 16 rectangles with very little computation. In Figure 12.6
the function and the 16 rectangles are graphed. While some rectangles over-approximate the
area, other under-approximate the area by about the same amount. Thus our approximate area
of 10.625 is likely a fairly good approximation.

For what concerns the approximation based on 1000 equally spaced, we can just use Equation
(12.3); after replacing the 16’s to 1000’s and appropriately changing the value of Ax.

We do so here, skipping from the original summand to the equivalent of Equation (12.3) to save
space. Note that Ax=4/1000 = 0.004.

P 1000
f 4x — x2 ) dXx =~ fo,ﬂ
0

1000 1000
=(48x2) > i—ax3 > 2
=1 i=1

1000-1001 1000(1001)(2001)
— (4Ax2)—2 —AX3 c

=10.666656

Figure 12.6: Approximating fg(4x—x2) dx with the right hand rule and 16 evenly spaced subintervals.

Using many, many rectangles, we have a likely good approximation of

f:(4x—x2)Ax. That is,

4
J (4x—x?) dx ~ 10.666656.
0

Instead of approximating a definite integral using rectangles of the same width and height determined
by evaluating f at a particular point in each consecutive subinterval, we could partition an interval
la, b] with subintervals that do not have the same size. We refer to the length of the i ™" subinterval
as Ax;. Also, one could determine each rectangle’s height by evaluating f at any point ¢; in the it
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subinterval. Thus the height of the i ™ subinterval would be f(c;), and the area of the i™h rectangle
would then be f(c;)Ax;.

These ideas are formally defined below.

Definition 12.3 (Partition)
A partition (partitie) of a closed interval [a, b] is a set of numbers x1, X2, ... Xp+1 Where

a=X1<X2<...<Xp<Xpy1=>.

The length of the i th subinterval, [Xi, Xix1], IS AX; = Xi+1— X;. If [a, b] is partitioned into subinter-
vals of equal length, we let Ax; represent the length of each subinterval.

The size of the partition, denoted £, is the length of the largest subinterval of the partition, i.e.
L = max (Ax;).
L

Summations of rectangles with area f(c;)Ax; are named after mathematician Georg Friedrich Bernhard

Riemann, as given in the following definition.

Definition 12.4 (Riemann sum)
Let f be defined on a closed interval [a, b], let {x1, X2,...,xp+1} be a partition of [a, b]

and let ¢; denote any value in the ith subinterval.

The sum
n

D fc)ax

i=1

is a Riemann sum (Riemann som) of f on [a, b].

Usually Riemann sums are calculated using one of the three methods we have introduced. The unifor-

mity of construction makes computations easier. So

b
| 00 ox
a
is typically approximated by means of the following Riemann sum
n
D fleoax,
i=1
for which we take the following steps.

1. Divide the interval [a, b] in n subintervals have equal length, such that

b—a
n

AXi=AX =

and the i t" term of the equally spaced partition is
Xi=a+ (i—1)Ax.

Thus x1 =aand xp 1 =0b.
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2. Evaluate one of the following summations:

(a) using the left hand rule we get the so-called left Riemann sum (/inker Riemann som):

(b) using the right hand rule we get the so-called right Riemann sum (rechter Riemann som):

n

Zf(xl-H)Ax,

i=1
(c) and using the midpoint rule we get the middle Riemann sum (midden Riemann som):

Zf (Xi +2Xi+1 ) Ax

i=1

Example 12.6

Approximate
3

J(5x+ 2) dx
-2

using the midpoint rule and 10 equally spaced intervals.

Solution

We have Ax =1/2 and x; = (—2)+(1/2)(i—1) =i/2—5/2 fori=1,2,...,10. As we are using

the midpoint rule, we will also need x;;1 and X5
Xi+xip1  ((/2—5/2)+((i+1)/2—5/2) i=9/2 i 9
2 2 T2 2w

We now construct the Riemann sum and compute its value.

3
10
Xi+ X
f5x+2 dx~2f( : ZLH)AX
-2

1(5 10(11) 37
p— _— —10._
22 2 4
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45
=—=22.5
2

Note the graph of f(x) = 5x + 2 in Figure 12.7. The regions whose area is computed by the definite
integral are triangles, meaning we can find the exact answer without summation techniques. We
find that the exact answer is indeed 22.5. One of the strengths of the midpoint rule is that often
each rectangle includes area that should not be counted, but misses other area that should. When
the partition size is small, these two amounts are about equal and these errors almost cancel each
other out. In this example, since our function is a line, these errors are exactly equal and they do
cancel each other out, giving us the exact answer.

Note too that when the function is negative, the rectangles have a negative height. When we
compute the area of the rectangle, we use f(c;)Ax; when f is negative, the area is counted as
negative.

y
A
17
7[
Ja
10 /
/
/
2 17éf 1 2 3 F
//
7

Figure 12.7: Approximating f_32(5x + 2) dx using the midpoint rule and 10 evenly spaced subintervals in
Example 12.6.

Notice in the previous example that while we used 10 equally spaced intervals, this number did not
play a big role in the calculations until the very end. Mathematicians love to abstract ideas; let us
approximate the area of another region using n subintervals, where we do not specify a value of n until
the very end.

Example 12.7
Revisit
4
f(4x—x2) dx
0
yet again. Approximate this definite integral using the right hand rule with n equally spaced
subintervals.
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Solution

We know Ax = (4—0)/n=4/n. We also find x; = 0+ Ax(i—1) = 4(i—1)/n. The right hand rule
uses X1, which is x;11 = 4i/n.

We construct the right Riemann sum as follows.

Ax)il (1 )Z‘
16Ax) nin+1) (16Ax)n(n+1)(2n+1)
2

n n2 6

32(n+1) B 32(n+1)(2n+1)

The result is an amazing, easy to use formula. To approximate the definite integral with 10 equally
spaced subintervals and the right hand rule, set n =10 and compute

4
32 1
(4x—x?)dx~ —[1——= | =10.56.
3 102
0

Recall how earlier we approximated the definite integral with 4 subintervals; with n = 4, the
formula gives 10, our answer as before.

We now take an important leap. More precisely, for any finite n, we know that

4
32 1
(4x — x?2 Jdx~ —|1——|.
3 n2
0

Both common sense and high-level mathematics tell us that as n gets large, the approximation
gets better. In fact, if we take the limit as n — 400, we get the exact are we are looking for, that

is:
4
32 1
(4x — x?2 = |lim —|[1——
n—+o0o 3 n2
0
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32

This is a fantastic result. By considering n equally-spaced subintervals, we obtained a formula for
an approximation of the definite integral that involved our variable n. As n grows large — without
bound - the error shrinks to zero and we obtain the exact area.

In addition to the left, right and middle Riemann sums, also upper and lower Riemann sums (boven
en onder Riemann som) can be defined. For that purpose, we consider a partition as before, and note
that f has both a minimum and maximum on [x;, X;+1], so there are numbers [; and u; in [x;, Xi+1] such
that

F(l) < f(x) < f(uwi)

for all x in [x;, xi+1]. If f(x) = 0, f(li)Ax; and f(ui)Ax; represent the areas of rectangles having the
interval [x;, Xi+1] as basis and having tops passing through the lowest and highest points on the graph
of f on that interval (Figure 12.8). Clearly, if A; is the area under the graph of f and above the horizontal
axis, enclosed between the straight lines x = x; and x + x;;1, then it holds that

fli)Ax; < A; < f(up)Ax;.

If f is not restricted to the positive half plan, then either one or both f(l;)Ax; and f(u;)Ax; can be
negative and will then represent the area of a rectangle lying below the x-axis. Anyhow, it will always
hold that f(l;))Ax; < f(ui)Ax;.

With this notation in place we can define the lower Riemann sum as
n
Si(n) = D f(l)Ax,
i=1

and the upper Riemann sum as

M

Su(n) =) f(u)Ax.

i=1

To illustrate the subtle difference between the left and lower Riemann sums, on the one hand, and the
lower Riemann sum, for instance, on the other hand, consider Figure 12.9, where the area under the
sine curve between x = 0 and x = m is approximated using the latter. From this figure, it should be

y

> X
Xi Ui L; X1

Figure 12.8: f has both a minimum and maximum on [x;, X;+1].
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clear that lower Riemann sum agrees with the left Riemann sum where the sine is increasing, whereas
it corresponds with the right Riemann sum on the interval where the sine curve is decreasing.

<

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 12.9: Distinction between the left and right Riemann sums and the lower Riemann sum.

12.2.3 Limits of Riemann sums

We have used limits to evaluate given definite integrals. Will this always work? We will show, given
not-very-restrictive conditions, that yes, it will always work.

The previous example has shown us how we can think of a summation as a function of n. More
precisely, given a definite integral fabf(x) dx, we let:

n
e Si(n)= Zf(x,-)Ax, be the left Riemann sum,

i=1

e Sp(n) =) f(xi+1)Ax, be the right Riemann sum,

M=

L

s T

Il
-

° Sm(n) =

rule,

Xi+Xitr1 . : :
f — AX, be the sum of equally spaced rectangles formed using the midpoint

]

and likewise for the lower and upper Riemann sums. Now, recall that the definition of the limit
nlirpooSL(n) = K implies that given any € > 0, there exists N > 0 such that

|SL(n)—K]| <€,

when n>N.

The following theorem states that we can use any of our three rules to find the exact value of a definite
integral.
—
Theorem 12.4 (Definite integrals and the limit of Riemann sums)
Let f be continuous on the closed interval [a,b] and let S (n), Sr(n), Sm(n), Ax, Ax; and c; be
defined as before. Then:

n
1. lim Si(n)= lim Sg(n)= lim_Su(n)= nHTw;f(ci)Ax,
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b
2. nﬂrpoo [Zl:f(c,-)Ax = ff(x) dx, and

This theorem also goes two steps further. It states that the height of each rectangle does not have to
be determined following a specific rule, but could be f(c;), where ¢; is any point in the i " subinterval.
Furthermore, it goes on to state that the rectangles do not need to be of the same width.

Let £ represent the length of the largest subinterval in the partition: that is, £ is the largest of all the
Axi's. If £ is small, then [a, b] must be partitioned into many subintervals, since all subintervals must
have small lengths. Taking the limit as £ goes to zero implies that the number n of subintervals in the
partition is growing to infinity, as the largest subinterval length is becoming arbitrarily small. We then
interpret the expression

M

lim
£L—0

—

f(ci)Ax;
i=1

as the limit of the sum of the areas of rectangles, where the width of each rectangle can be different
but getting small, and the height of each rectangle is not necessarily determined by a particular rule.
The theorem states that this Riemann sum also gives the value of the definite integral of f over [a, b].

Having a better understanding of the definite integral in terms of Riemann sums, we are now ready to
prove the properties listed in Theorem 12.3.

We prove the fourth statement in this theorem, namely that

b b b
f(f(x)ig(x))dx:ff(x) dxd:fg(x) dx.

The proofs of the other properties proceed in a similar way.

First we will prove the sum rule. From the definition of the definite integral we have,

b
[tro0+gmnax=tim, > (r(x)+ o(x))

n—>+ool:1
- (33 ) xS )
i=1 i=1
:nﬂTmzlzf(x;‘)Ax+nﬂrpmizllg(xi*)Ax
b b
:Jf(x) dx+Jg(x) dx

To prove the difference formula we can either redo the above work with a minus sign instead of a plus
sign or we can use the fact that we now know this is true with a plus and using the properties proved
above as follows.

b

b
j (F 00— g (x)) dx = j £ () + (=g (%)) dx

a
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b

[raxs fb (—g () dx

clb ab
ff(x) dx—fg(x) dx

By resorting to Riemann sums we can also prove some properties related to the magnitude of a definite
integral. These are listed in the following theorem.

Theorem 12.5 (Properties of the magnitude of a definite integral)
Let f and g be defined on a closed interval I that contains the values a and b, and let m and M be
constants. The following hold:

1. Iff(x)=0fora<x<b, then

b
ff(x) dx > 0.
2. Iff(x)=g(x) fora<x < b then
b b
J-f(x) dxzfg(x) dx.

3. Ifm<f(x) <M fora<x<bthen

b
m(b—a)sff(x) dx <M(b—a).

We will prove the first property in this theorem. From the definition of the definite integral we have

b
Jf(x) dx—nﬂTw;f(xf)Ax,

where Ax = b;—a. Now, by assumption f(x) = 0 and we also have Ax > 0 and so we know that

n
Zf(xl.*)Ax >0.
i=1
So, from the basic properties of limits we then have

lim gnlzf(xi*)sznﬂTmOZO.

n—+40oo
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But the left side is exactly the definition of the integral and so we have

n

b
Jf(x) dX—nﬂTm;f(x;")sz 0.

We now know of a way to evaluate a definite integral using limits; in the next section we will see how
the fundamental theorem of calculus makes the process simpler. The key feature of this theorem is its
connection between the indefinite integral and the definite integral.

/—{Lebesgue integration} ~

The integral we study within the framework of this course, the so-called Riemann integral, is just one kind of integral that
has been proposed. While the Riemann integral considers the area under a curve as made out of vertical rectangles,
the Lebesgue definition considers horizontal slabs that are not necessarily just rectangles, and so it is more flexible. For
this reason, the Lebesgue definition makes it possible to calculate integrals for a broader class of functions. How the
Lebesgue integral differs from the Riemann integral is illustrated in Figure 12.10 for a function f. Essentially, to compute
the latter, one partitions the domain of f into subintervals, while for the latter one partitions the range of f.

Figure 12.10: Riemann (top) versus Lebesgue integration (bottom).

12.3 The fundamental theorem of calculus

12.3.1 Mean value theorem for definite integrals

Consider the graph of a function f in Figure 12.11(a) and the area defined by f14f(x) dx. In Fig-
ure 12.11(b), the height of the rectangle is greater than f on [1, 4], hence the area of this rectangle is is
greater than f;f(x) dx. In Figure 12.11(c), the height of the rectangle is smaller than f on [1, 4], hence
the area of this rectangle is less than fff(x) dx. Finally, in Figure 12.11(d) the height of the rectangle

is such that the area of the rectangle is exactly that of fgf(x) dx. Since rectangles that are too big,
as in Figure 12.11(b), and rectangles that are too little, as in Figure 12.11(c), give areas greater/lesser
than f14f(x) dx, it makes sense that there is a rectangle, whose top intersects f(x) somewhere on
[1,4], whose area is exactly that of the definite integral.

We state this idea formally in a theorem.
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<
<

(c) (d)

Figure 12.11: The graph of a function f (a) and differently sized rectangles give upper and lower bounds on

[2£(x) dx (b-c).

Theorem 12.6 (The mean value theorem of integration)
Let f be continuous on [a, b]. There exists a value c in [a, b] such that

b
Jf dx = £(c)(b—a).

This is an existential statement; ¢ exists, but we do not provide a method of finding it. Theorem 12.6
is directly connected to the mean value theorem of differentiation (Theorem 10.4).

Let us prove this theorem by considering a more general formulation. Namely, if f : [a,b] = R is

continuous and g is an integrable function that does not change sign on [a, b], then there exists c in

]a, b such that
b

b
J.f x)dx = f(c )f g(x) dx. (12.5)

a

Clearly, we obtain the expression used in Theorem 12.6 by letting g(x) = 1.

Now to prove Equation (12.5). Let us assume that f : [a,b] — R is continuous and g is a nonnegative
integrable function on [a, b]. By the extreme value theorem (Theorem 10.1), there exists m and M such
that for each x in [a, b], it holds that m < f(x) <M and f]a, b] = [m, M]. Since g is nonnegative, we may

write that
b b b
mJ g(x)dx < Jf(x)g(x) dx < Mf g(x)dx.

Now let
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Obviously, if I = 0, we are done since

means

so forany cin Ja,b|,
b
ff(X)g(x) dx =f(c)I = 0.

If I #0, then

m<

~|

b
ff(x)g(x) dx <M.

By the intermediate value theorem, f attains every value of the interval [m, M], so for some cin Ja,b]
we have

that is,

and we still get the same result as above.
12.3.2 Main theorems

Let f(t) be a continuous function defined on [a, b]. The definite integral fff(x) dx is the area under f
on [a, b]. We can turn this concept into a function by letting the upper (or lower) bound vary.

Let F(x) = f;f(t) dt. It computes the area under f on [a, X] as illustrated in Figure 12.12. We can study
this function using our knowledge of the definite integral.

We can also apply calculus ideas to F(x); in particular, we can compute its derivative. While this may
seem like an innocuous thing to do, it has far-reaching implications, as demonstrated by the fact that
the result is given as an important theorem.
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y
A

Figure 12.12: The area of the shaded region is F(x) = f f(t)

Theorem 12.7 (The fundamental theorem of calculus, Part 1)

and

Let f be continuous on [a, b] and let F(x f f(t) dt. Then F is a differentiable function on |a, b|,

For a given f(t), let us define the function F(x) as

- f F(t)dt

For any two numbers x1 and x1 + Ax in [a, b], we have

Fixy) — f £(t) dt

X1+AX

F(x1+Ax) = f f(t)dt.

and likewise

Subtracting these two equalities yields

X1+AX

F(x1+Ax)—F(x1):f t)dt— ff

Using Theorem 12.3 we can rewrite the right hand side of Equation (12.6) as

X1+AX X1+AX X1+AX

dt—ff f dt+ff f F(t)dt.

(12.6)
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Hence, Equation (12.6) becomes

X1+AX
F(x1 4+ AX) — F(x1) = J £(t) dt. (12.7)

According to the mean value theorem for integration (Theorem 12.6), there exists a real number c €

[X1,X1 + AX] such that
X1+AX

ft)dt=f(c)-Ax.

This expression allows us to rewrite Equation (12.7) as
F(x1+Ax)—F(x1) =f(c)-Ax. (12.8)

Note that we just write c in order not to overload the notation, but one should keep in mind that, for a
given function f, the value of ¢ depends on x; and on Ax, though it is always confined to the interval
[X1,X1 + AX].

Now, dividing both sides of Equation (12.8) by Ax gives

F(x1+Ax)—F(x1)
AX

=f(o),

whose left side is the difference quotient for F at x1. So, let us take the limit as Ax — 0 on both sides

of the equation. This yields:
F(x1+Ax)—F(x
jim FCATAOZFX) e, (12.9)
Ax—0 AX AXx—0

Clearly, the expression on the left side of the resulting equation is the definition of the derivative of F
at x1, so we may rewrite Equation (12.9) as

F’(x1) :Al>i(rl10f(c). (12.10)

To find the limit on the right side of Equation (12.10), we resort to the squeeze theorem (Theorem 8.5).
The number c is in the interval [x1, X1 + AX], s0 x1 < ¢ < X1 + AX. Besides, it holds that

lim x1 =x1
Ax—0

and
lim (x1+AXx) = x3.

Ax—0
Therefore, according to the squeeze theorem, it must hold that
lim ¢c=x3.
x—0 !

Consequently, we may rewrite Equation (12.10) as

F'(x1) = Iim1 ().

C—X
The function f is continuous at ¢, so the limit can be taken inside the function. In this way, we get
F'(x1) = f(x1),

which completes the proof.
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To illustrate this theorem, let us consider
X
F(x) = f(t2 +sin(t)) dt
-5

and try to find F’(x).

Using Theorem 12.7, we immediately have F’/(x) = x? 4 sin(x). This simple example reveals that F(x) is
an antiderivative of x2 4 sin(x)! Therefore, F(x) = x3/3—cos(x) + C for some value of C. We have done
more, however, than found a complicated way of computing an antiderivative. Consider a function f
defined on an open interval containing a, b and c. Suppose we want to compute f:f(t) dt. First, let

F(x) = f ” F(t) dt.

Using the properties of the definite integral (Theorem 12.3), we know

C

b b
ff(t) dt:Jf(t) dt+J.f(t) dt

a b
= —ff(t) dt+ff(t) dt
— —F(a) +F(b)
= F(b)—F(a).

We now see how indefinite integrals and definite integrals are related: we can evaluate a definite
integral using antiderivatives. This is the second part of the fundamental theorem of calculus.

Theorem 12.8 (The fundamental theorem of calculus, Part 2)
Let f be continuous on [a, b] and let F be any antiderivative of f. Then

b
ff(x) dx =F(b)—F(a).

We will rely on Riemann sums to prove this theorem in a more rigorous way. For that purpose, let f
be integrable on the interval [a, b], and let f admit an antiderivative F on [a, b]. Consider the quantity
F(b)—F(a) and let there be a partition of size £ with numbers x1,X2,...,Xn+1 such that

A=X1 <X <---<Xp<Xpi1=>h.

Clearly,

F(b)—F(a) =F(Xp+1) —F(x1).
Now, for i=2,...,n we add each F(x;) along with its additive inverse, so that the resulting quantity is
equal:

F(b)—F(a) = F(Xny1) +[—F(Xn) + F(Xp)] + -+ [—F(x2) + F(x2)] — F(x1)
= [F(Xn+1) — F(Xn)] + [F(Xn) = F(Xp=1)] + - -+ + [F(x3) = F(x2)] + [F(x2) — F(x1)].
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Or shorter: ;

) = > [F(xip1) — F(xq)). (12.11)

i=1
Inspecting the right hand side of this equation reminds us to the mean value theorem of differentiation
(Theorem 10.4). Indeed, it tells us that

where c € [a, b], or equivalently
F(b)—F(a) =F'(c)(b—a).

Hence, since the function F is differentiable on the interval [a, b] and hence differentiable and continu-
ous on each interval [xi—1, X;|, we can rewrite the terms appearing in right hand side of Equation (12.11)
as

F(Xir1) — F(xi) = F'(ci) (Xir1 —Xi)

where ¢; € [xi+1,Xi]. This allows us to rewrite Equation (12.11) as

) = D IF(c) (Xep1 — X))

i=1

Moreover, our assumption that F is an antiderivative of f implies that F’(c;) = f(ci). Hence, letting
Xi+1—X; = Ax;, we get

= > If(c) (A7) (12.12)
i=1

Essentially, we are describing with this expression the area of a rectangle, with the width times the
height, and we are adding the areas together. By taking the limit of the expression as the norm of the
partitions approaches zero, we arrive at the Riemann integral. We know that this limit exists because
f was assumed to be integrable. So, we take the limit on both sides of Equation (12.12), to obtain

n
LI:I—%(F | Ogl:[f )(AX)]

Neither F(b) nor F(a) is dependent on £, so the limit on the left side remains F(b)— F(a). Furthermore,
the expression on the right side of the equation defines the integral over f from a to b (Theorem 12.4).
Therefore, we obtain
b
= ff(x) dax
a

which completes the proof.

Example 12.8
We spent a great deal of time in the previous section studying f§(4x—x2) dx. Using the funda-
mental theorem of calculus, evaluate this definite integral.

Solution

We need an antiderivative of f(x) = 4x — x2. All antiderivatives of f have the form

1
F(x) =2x?— 5x3 +C;
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for simplicity, choose C = 0.

The fundamental theorem of calculus states
4
2 2 1 3 64
(Ax—x°)dx=F(4)—F(0)=(2(4)"— 54 —(0—0) =32— 3 = —,
0

This is the same answer we obtained using limits in the previous section, just with much less
work.

A special notation is often used in the process of evaluating definite integrals using the fundamental

theorem of calculus. Instead of explicitly writing F(b) — F(a), the notation F(x)‘: is used. Also note that
any antiderivative F(x) can be chosen when using the fundamental theorem of calculus to evaluate
a definite integral, meaning any value of C can be picked. The constant always cancels out of the
expression when evaluating F(b) — F(a), so it does not matter what value is picked. This being the
case, we might as well let C = 0.

Example 12.9

Evaluate the following definite integrals.

2 m 5 9 5
1. Jx3 dx 2. fsin(x) dx 3. fet dt 4. J/Edu 5. Jz dx
-2 0 0 4 1
Solution
2 2
1 1
1. Jx3 dx = _(—24)—(—(—2)4)_0
L, \4 4
=2
T
T
2. fs =—cos(x)| = —cos(m)—(—cos0)=1+1= 2. So, the area under one hump of
0
a sine curve is 2.

5
et dt = et|
0

2 9
1 2 3
.Jﬁdu_J u?z du= —uz2
. 3
4

5
5
5. J2dx_2x‘1_2(5)—2_2(5—1)_8.
1

—e’—e%=e®>—1~147.41.

w
o%m

9

SN

4

This last integral in Example 12.9 is interesting; the integrand is a constant function, hence we are
finding the area of a rectangle with width (5— 1) = 4 and height 2. Notice how the evaluation of the
definite integral led to 2(4) = 8.
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In general, if ¢ is a constant, then

b
Jc dx =c(b—a).

12.3.3 Motion and the fundamental theorem of calculus

We established, starting in Section 9.1.4, that the derivative of a position function is a velocity function,
and the derivative of a velocity function is an acceleration function. Now consider definite mtegrals
of velocity and acceleration functions. Specifically, if v(t) is a velocity function, what does f ) dt
mean?

The fundamental theorem of calculus states that

b
J. v(t) dt=V(b)—V(a),

where V(t) is any antiderivative of v(t). Since v(t) is a velocity function, V(t) must be a position
function, and V(b) — V(a) measures a change in position, or displacement (verplaatsing).

Example 12.10

A ball is thrown straight up with veIocity given by v(t) = —32t+20m/s, where t is measured in
seconds. Find, and interpret, fo ) dt.

Solution

Using the fundamental theorem of calculus, we have

1
fv f —32t+20) dt
0

1
— _16t2 +20t(0
_ 4.

Thus if a ball is thrown straight up into the air with velocity v(t) = —32t+ 20, the height of the
ball, 1 second later, will be 4 metres above the initial height.

Integrating a rate of change function gives total change. Velocity is the rate of position change; inte-
grating velocity gives the total change of position, i.e., displacement.

Integrating a speed function gives a similar, though different, result. Speed is also the rate of position
change, but does not account for direction. So integrating a speed function gives total change of
position, without the possibility of negative position change. Hence the integral of a speed function
gives distance travelled (afgelegde afstand).

12.3.4 The fundamental theorem of calculus and the chain rule

Using other notation, we may write Part 1 of the fundamental theorem of calculus as

d
&(F(X)) =
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While we have just practised evaluating definite integrals, sometimes finding antiderivatives is impos-
sible and we need to rely on other techniques to approximate the value of a definite integral. Functions

written as
X
= ff(t) dt
a

It may be of further use to compose such a function with another. As an example, we may compose
F(x) with g(x) to get

are useful in such situations.

What is the derivative of such a function? The chain rule can be employed to find

d

—(Fla))) = Fa(x))g" (00) = Flgx))g’(x)

An example will help us understand this.

Example 12.11

Find the derivative of

x2 5
1. F(x) —fln(t) dt 2. F(x) = f t3 dt.
2 cos(x)
Solution
1. We can view F(x) as being the function G(x fz In(t) dt composed with h(x) = x?; that is,

F(x) = G(h(x)). The fundamental theorem of calculus states that G’(x) = In(x). The chain
rule gives us

F'(x) = G'(h(x))h’(x)
= In(h(x))h’(x)
In(x?)2x

xln(xz)

Normally, of course, the steps defining G(x) and h(x) are skipped.

cos(x)

2. Note that F(x) =— |

t3 dt. Viewed this way, the derivative of F is straightforward:

F’(x) = sin(x) cos3(x).
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12.3.5 Average value

Recognize that the mean value theorem can be rewritten as

1
b—a

b
f(e) = f £(x) dx,

for some value of c in [a,b]. Next, partition the interval [a,b] into n equally spaced subintervals,
a=x1 <Xz <...<Xps1=>b and choose any ¢; in [x;, Xxit+1]. The average of the numbers f(c1), f(c2),
..., f(cn) is:
1 12
~(Fle)+7tca) +.. +f(en)) = = D f(co).
i=1

Multiply this last expression by 1 in the form of Eg:g;:
12 4 1(b—a)
;;ﬂci) = ;ﬂci); T
1 & _ b—a
i l:lf(Cl)
1
i [:1f(cl)Ax
where Ax = (b—a)/n. Now take the limit as n — +oo:
n 1 b
i, g M= g f £(x) dx = f(c).

a

This tells us this: when we evaluate f at n (somewhat) equally spaced points in [a, b], the average
value of these samples is f(c) as n — 4.

This leads us to a definition.

Definition 12.5 (The average value of f on [a,b])
Let f be continuous on [a, b]. The average value of f (gemiddelde functiewaarde) on |[a, b] is
f(c), where c is a value in [a, b] guaranteed by the mean value theorem. l.e.,

b

1
Average Value of f on [a, b] = 5—a Jf(x) ax.

a

An application of this definition is given in the following example.

Example 12.12
An object moves back and forth along a straight line with a velocity given by v(t) = (t—1)? on
[0, 3], where t is measured in seconds and v(t) is measured in m/s.

1. What is the average velocity of the object?

2. What was the displacement of the object?



12.4 TECHNIQUES OF ANTIDIFFERENTIATION 447

Solution

1. By Definition 12.5, the average velocity is:

3

=1 m/s.
0

1

3 3
1 1/(1
— | (t=1)2dt== | (t?2=2t+1)dt= = =t3—t2+ ¢t
3—0J( ) :-J( +1) 3(3 +

0 0

2. We calculate this by integrating its velocity function: fg(t— 1)2 dt = 3 m. Its final position
was 3 meter from its initial position after 3 seconds: its average velocity was 1 m/s.

This section has laid the groundwork for a lot of great mathematics to follow. The most important
lesson is this: definite integrals can be evaluated using antiderivatives. Since the previous section
established that definite integrals are the limit of Riemann sums, we can later create Riemann sums
to approximate values other than area under the curve, convert the sums to definite integrals, then
evaluate these using the fundamental theorem of calculus. This will allow us to compute the work done
by a variable force, the volume of certain solids, the arc length of curves, and more.

The downside is this: generally speaking, computing antiderivatives is much more difficult than com-
puting derivatives. For that reason, we will see in Section 12.6.2 how to approximate the value of
definite integrals beyond using the left hand, right hand and midpoint rules. These techniques are
invaluable when antiderivatives cannot be computed, or when the actual function f is unknown and all
we know is the value of f at certain x-values. But first, we will study techniques of finding antideriva-
tives analytically so that a wide variety of definite integrals can be evaluated.

12.4 Techniques of antidifferentiation

This chapter is devoted to exploring techniques of antidifferentiation. While not every function has an
antiderivative in terms of elementary functions like polynomial, exponential or trigopnometric functions,
we can still find antiderivatives of a wide variety of functions.

12.4.1 Substitution

12.4.1.1 Rationale

Essentially, integration by substitution (substitutie) allows us to undo the chain rule. Its underlying
principle is to rewrite a complicated integral of the form ff(x) dx as a not-so-complicated integral
[ h(u) du.

For instance, consider
J(20x+30)(x2 +3x—5)° dx.

Arguably the most complicated part of the integrand is (x? 4+ 3x—5)%. We wish to make this simpler;
we do so through a substitution. Let u = x? + 3x—5. Thus

(x?> +3x—5)° = u°.
We have established u as a function of x, so now consider the differential of u:

du = (2x + 3)dx.
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Let us return now to the original integral and do some substitutions through algebra:
f(zox+ 30)(x%? +3x—5)% dx = J 10(2x 4 3)(x% +3x—5)% dx

= f 10(x? +3x—5)% (2x + 3) dx

u du

= f 10u® du

=ul%4cC (Replace u with x? +3x—5.)
= (x>+3x=5)104C

In general, let F(x) and g(x) be differentiable functions and consider the derivative of their composition:

d

—(Fl900)) =F (gx))g" ).

Thus
J F(9(x))g’ (x) dx = F(g(x)) + C.

Integration by substitution works by recognizing the inside function g(x) and replacing it with a vari-
able. By setting u = g(x), we can rewrite the derivative as

diX(F(u)) =F'(u)u’.

Since du = g’(x)dx, we can rewrite the above integral as

fF’(g(x))g’(x) dx = f F'(u)du = F(u)+C=F(g(x))+C.

The point of substitution is to make the integration step easy. Indeed, the step fF’(u) du=F(u)+C
looks easy, as the antiderivative of the derivative of F is just F, plus a constant. The work involved is
making the proper substitution. There is not a step-by-step process that one can memorize; rather,
experience will be one’s guide. To gain experience, we now embark on some examples.

Example 12.13

Evaluate the following indefinite integrals:

7
1. J— dx, 2. fxsin(x2+5) dx, 3. JX\/X+3 dx.

—3x+1

Solution

1. View the integrand as the composition of functions f(g(x)), where f(x) = 7/x and g(x) =
—3x+ 1. Then, we let u =—3x+ 1, the inside function. Thus du = —3dx. The integrand lacks
a —3; hence divide the previous equation by —3 to obtain —du/3 = dx. We can now evaluate
the integral through substitution.

7 7 du
——dx= | ——
f—3x+1 fu(—3)



12.4 TECHNIQUES OF ANTIDIFFERENTIATION 449

—7 (du
3 u
:_—In ul+C

3 lul

7
=—gInl=3x+1]+C.

2. We choose to let u be the inside function of sin(x? +5). So, let u = x? + 5, hence du = 2x dx.
The integrand has an x dx term, but not a 2xdx term. We can divide both sides of the du
expression by 2:

1
du=2xdx = Edu = X dx.
We can now substitute.

fxsin(xz +5) dx = f sin(x? +5) x dx
~——

u 1
jdu

= f 1 sin(u) du
)2

1
== cos(u)+C  (Now replace u with x% +5.)

1 2
:—Ecos(x +5)+C.

Thus 1
stin(x2 +5) dx =—> cos(x? +5) +C.

3. Recognizing the composition of functions, set u = x + 3. Then du = dx, giving what seems
initially to be a simple substitution. But at this stage, we have:

Jx\/x+3 dx:Jx/Udu.

We cannot evaluate an integral that has both an x and an u in it. We need to convert the x
to an expression involving just u.

Since we set u = x + 3, we can also state that u—3 = x. Thus we can replace x in the
1
integrand with u— 3. It will also be helpful to rewrite y/u as uz2.

fxx/m dx:f(u—3)u% du
= J (uz —3uz) du

2 s 3
:§u2—2u2 +C

:§a+3ﬁ—2u+3)

3
2

+C
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12.4.1.2 Integrals involving trigonometric functions

Integration by substitution can also be used to unveil the antiderivatives of the tangent, cotangent,
secant and cosecant. For instance, consider the following example concerning the former function.

Example 12.14

Evaluate

ftan(x) ax.

Solution

Rewrite tan(x) as sin(x)/ cos(x). While the presence of a composition of functions may not be
immediately obvious, recognize that cos(x) is inside the 1/x function. Therefore, we see if setting
u = cos(x) returns usable results. We have that du = —sin(x) dx, hence —du = sin(x) dx. We can

integrate:
d sin(x) d
ftan(x) X:Jcos(x) X

_J sin(x) dx
COS(X) ———
S~— —du

1/u
-1
:f— du
u
=—Infu|+C
=—In]cos(x)|+C.

This can be simplified even further by bringing the —1 inside the logarithm as a power of cos(x),
as in:

—In|cos(x)|+C = In|(cos(x))"t|+C
1

cos(x)

=In

=In|sec(x)|+C.

Thus the result they give is [ tan(x) dx = In|sec(x)| +C.

We can use similar techniques in Example 12.14 to find antiderivatives of the other trigonometric
functions. In this way, one finds:

1. ftan(x) dx =—In|cos(x)|+C

2. | cot(x) dx =In|sin(x)|+C

W

4 Csc

: f (x)
. fsec(x) dx =In|sec(x)+tan(x)|+C
. f (x) dx =—In]|csc(x)+ cot(x)|+C
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Likewise, we can find antiderivatives of hyperbolic functions:

1. ftanh(x) dx =In(cosh(x))+C

2. fcoth(x) dx =In|sinh(x)|+C

Using the power-reducing formulas we have seen in Chapter 5 (Theorem 5.12), we can also tackle
integrals involving powers of trigonometric and hyperbolic functions.

Example 12.15

Evaluate

f cos?(x) dx.

Solution

We have a composition of functions as cos?(x) = (cos(x))z. However, setting u = cos(x) means
du = —sin(x) dx, which we do not have in the integral. So, let us use Theorem 5.12, which states

1+ cos(2x)

2
COS™(X) =
( ) 2

The right hand side of this equation is not difficult to integrate. We have:

Jcosz(x) dx:fH%s(zx) dx

—J 1+lcos(2x) ax
S J\2 2 '

1 1sin(2x)
=—X+=
2 2 2

1 sin(2x)
2 4

So, we easily find:

+C.

We will make significant use of this power-reducing technique in future sections.

12.4.1.3 Integrals leading to inverse trigonometric and hyperbolic functions

When studying derivatives of inverse functions, we learned that

d( ; ) 1
Ix arctan(x) RETRE

Applying the chain rule to this is not difficult. For instance, in general, we have

9 (arctan(ax))
—( arctan(ax) | = ——.
dx (ax) 1+ a2x?

This result can be used to evaluate

—1 d
X
a? +x2
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For that purpose, we rewrite this integral as
1 J 1 d
— | —— dx.
Q2 x\2
1+(3)

This can now be integrated using substitution. Set u = x/a, hence du = dx/a or dx = adu. Thus

1 d 1 1 d
— —dx=—-—| —— du
a? +x2 al 1+u?

1
= —arctan(u)+C
a

1 X
= —arctan (—) +C
a a

This demonstrates a general technique that can be applied to other integrands that result in inverse
trigonometric functions. More specifically, for a > 0, we have

1 1 X
———— dx = —arctan (—) +C (12.13)
a? + x2 a a
J ! d i (X) C (12.14)
——— dx =arcsin| — |+ .
1/a2_x2 a

Of course, given the link between trigonometric and hyperbolic functions, similar integrands result in
inverse hyperbolic functions:

1 X
——— dx =arcosh| — +C:In‘x+\/x2—02’+C, forO<a<x, 12.15
f\/xz—a2 (a) ( :
1 X
——— dx =arsinh| — +C:In)x+\/x2+a2|+C, fora >0, (12.16)
fx/x%cz2 (a)
1 X
—Qrtanh(—)JrC, x2 < a?,
1 a a
—arcoth (—) +C, a? < x?
a a
1 a—+x
= —In +C, (12.18)
2a a—x

Example 12.16

Evaluate the following indefinite integrals:
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1 1
1. — dx, 3. — dx,
x2—4x+13 x2—1
2 MY 4f ! d
. — 3dx, . — aX.
V16— x2 vVIx2+10
Solution

1. We start by completing the square in the denominator, i.e.

1 1
x2—4x+13 (x—2)2+9

We can now integrate, to arrive at

1 1 1 xX—2
—— dx = ————— dx = —arctan +C.
x2—4x+13 (x—2)2+9 3 3

2. This integral requires two different methods to evaluate it. We get to those methods by
splitting up the integral:

4—x 4 X
_ dx:J— dx—f— ax.
V16 —x2 V16 —x2 V16 —x2

The first integral is easy to handle; the second integral is handled by substitution, with
u=16—x2. We handle each separately.

4 X
—— dx = 4arcsin(—)+C.
f\/16—x2 4
J X d Set 16 — x?2 d 2xd d xd du/2. We h
— dx: et u=16—x?, so du=—2xdx and xdx =—du/2. We have
/16— x2
X —du/?2
j—dXZ —du/z
V16 —x2 Ju
1J 1 d
=—— | — du
2) Ju
=—J/u+C
=—v16—x24C.

Combining these together, we have

4—x X
——— dx = 4arcsin(—)+ v16—x2+C.
V16 —x2 4

3. Multiplying the numerator and denominator by (—1) gives:

Loy 1 g
X = X.
fxz—l J-l—x2
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The second integral can be solved directly using Equation (12.18), with a = 1. Thus

! d ! d
X =— X
x2—1 1—x2

—artanh(x)+C x?<1

—arcosh(x)+C  1<x?

+C. (12.19)

x+1

4. This requires a substitution, then Equation (12.16) can be used.

Let u = 3x, hence du = 3dx. We have

J 1 d 1J 1 d
- dx=- | ——— du.
v9x2+10 3) Vu?+10

Note a? = 10, hence a = ¥/10. We immediately obtain

1 1 3x 1
Jﬁ dx—garsinh(/—l_o>+C—§In|3x—|—v9x2+10|+C
X< +

12.4.1.4 Substitution and definite integration

Definite integrals that require substitution can be calculated using the following workflow:

1. Start with a definite integral fff(x) dx that requires substitution.

2. Ignore the bounds; use substitution to evaluate ff(x) dx and find an antiderivative F(x).

b
— F(b)—F(a).

3. Evaluate F(x) at the bounds; that is, evaluate F(x)
a

This workflow works fine, but substitution offers an alternative that is powerful and time saving. Since
substitution converts integrals of the form fF’(g(x))g’(x) dx into an integral of the form fF'(u) du with
the substitution of u = g(x), we just have to appropriately change the bounds of a definite integral, i.e.

b g(b)
fF’(g(x))g’(x) dx = J- F’(u) du.
a g(a)

This indicates that once you convert to integrating with respect to u, you do not need to switch back
to evaluating with respect to x.

Example 12.17

Evaluate
/2

sin(x) cos(x) dx.

o
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Solution

Let u = g(x) = cos(x), giving du = —sin(x) dx and hence sin(x) dx = —du. The new upper bound
is g(m/2) = 0; the new lower bound is g(0) = 1. Note how the lower bound is actually larger than
the upper bound now. We have

m/2

sin(x) cos(x) dx =

r—l%o
I
<
Q
<

o

In Figure 12.13 we have graphed the two regions defined by our definite integrals. They bear no
resemblance to each other, but they have the same area.

y y
A A

1 1 y=u

y=sin(x)cos (X)
0.5 0.5
> X - > u
1 2 1 2
-0.5 -0.5
(a) (b)

Figure 12.13: Graphing the areas defined by the definite integrals of Example 12.17.

12.4.1.5 Tangent half-angle substitution

The tangent half-angle substitution, also known as the Weierstrass substitution after Karl Weierstrass,
is a substitution used for finding antiderivatives of rational functions of trigonometric functions.

For this substitution we let t = tan (%) By the double-angle formula for the sine function, we get

sin(x) = 2sin (;) cos (;)
= 2tcos? (;)

2t

X
sec? (—)
2
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2t
1t

Similarly, by the double-angle formula for the cosine function, we easily find

cos(x) =1—2sin? (;)

P%
= 1—2t?cos? (—)
2

2t2
sec? (—)
2
2t2
T 14+¢2
1-t?
C14t2]
Moreover, since
dat 1 5 (x)
— =—sec’| =
dx 2 2
14t2
=—
we get the following expression for dx:
2
ax = dt.
14t2
Example 12.18
Evaluate the following indefinite integrals:
1 sin(x)
1. | ———dx 2. | —————— dx
1+ sin(x) 2 +cos?(x)
Solution

1. Using the Weierstrass substitution, we easily find

1-+t2

dax 1 2 2
- = dt = dt,
1+ sin(x) 1+( 2t )1+t2 (t+1)?
where the last integral can be evaluated by a change a variables. Indeed, lettingu=t+1,
we find
° _gt- 2 i

= 9 e — + ’

(t+1)2 1+t
or in terms of the original variable x where we started from:

f dx -2 c
— +C.
1+sin(x)  1+tan(%)
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2. Again, it is clear that the Weierstrass substitution will help us out:

, 2t
sin(x) d (th) 2
S o2 x) X7 2 5 dt
2+ cos4(x) 2 +G_t; dt) 1+t
+t

4t gt
) 3t44+2t2+3

It should be clear that we can recast the last integral in order to arrive an arctangent function.
This can be done, by letting v = t2, to get

2
——dv
J3v2+2v+3

which can be rewritten, after some algebra, as

4 3v41)2 '
(zﬁ) 41

Using the substitution w = 32"1;%1, the latter integral on its turn becomes
V2 1
— | —dw,
2 ) w241
which in terms of v evaluates to
J2 . 3v+1
—arctan .
2 242
Consequently, in terms of the original variable x, we arrive at
2
sin(x) V2 3(tan(§)) +1
—— dx = —arctan
2 4+ cos?(x) 2 242

12.4.2 Integration by parts

Here is a simple integral that we can not yet evaluate:

chos(x) ax.

It’s a simple matter to take the derivative of the integrand using the product rule, but there is no
such rule for integrals. However, this section introduces integration by parts (partiéle integratie), a
method of integration that is based on the product rule for derivatives. It will enable us to evaluate
this integral.

The product rule says that if u and v are functions of x, then (uv)’ = u’v+uVv’. For simplicity, we have
written u for u(x) and v for v(x). Suppose we integrate both sides with respect to x. This gives

J(uv)’dx = f(u’v+ uv’) dx.
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By the fundamental theorem of calculus, the left side integrates to uv. The right side can be broken
up into two integrals, and we have

uv = f u’vdx +f uv’ dx.
Solving for the second integral we have

Juv’dx = uv—f u’vdx.

Using differential notation, we can write du = u’(x)dx and dv = v/(x)dx and the expression above can
be written as follows:

fudv:uv—fvdu. (12.20)
If our problem concerns a definite integral, we likewise arrive at
x=b xX=b
b
f udv=uv| — j v du.
a

X=a X=a

Typically, we try to identify u and dv in the integral we are given, and the key is that we usually want
to choose u and dv so that du is simpler than u and v is hopefully not too much more complicated
than dv. This will mean that the integral on the right side of the integration by parts formula, fvdu
will be simpler to integrate than the original integral fudv.

Example 12.19

Evaluate the following indefinite integrals:

1. fxz cos(x) dx 3. Jarctan(x)dx
2. fex cos(x) dx 4. Jcos(ln(x)) dx
Solution

1. Let u = x? so that dv = cos(x)dx. Then, it follows that du = 2xdx and v = sin(x). Equa-
tion (12.20) leads to

x2 cos(x) dx = x? sin(x) —J 2xsin(x) dx.

At this point, the integral on the right is indeed simpler than the one we started with, but to
evaluate it, we need to do integration by parts again. Here we choose u = 2x and dv = sinXx,
so that du = 2dx and v = —cos(x). Through Equation (12.20) this yields:

fxz cos(x) dx = x? sin(x) — (—Zx cos(x)— J —2cos(x) dx) .

The integral all the way on the right is now something we can evaluate. It evaluates to
—2sinx. Then going through and simplifying, being careful to keep all the signs straight, our
answer is

sz cos(x) dx = x? sin(x) 4+ 2x cos(x) — 2 sin(x) + C.



12.4 TECHNIQUES OF ANTIDIFFERENTIATION 459

2. This is a classic problem. In this particular example, one can let u be either cos(x) or eX; we
choose u = e* and hence dv = cos(x)dx. Then du = eXdx and v = sin(x) as shown below.
Using Equation (12.20) yields

J e* cos(x) dx = e*sin(x) —J e*sin(x) dx.
The integral on the right is not much different than the one we started with, so it seems like
we have gotten nowhere. Let us nonetheless keep working and apply integration by parts to

the new integral, using u = e* and dv = sin(x) dx. Then we get du = eXdx and v = —cos(x)
and this leads us to the following:

f e* cos(x) dx = e*sin(x) — (—ex cos(x)— f —e* cos(x) dx)
= eXsin(x) + eX cos(x) —f e* cos(x) dx.

It seems we are back right where we started, as the right hand side contains fex cos(x) dx.
But this is actually a good thing.

Add fex cos(x) dx to both sides. This gives
Zf e* cos(x) dx = e*sin(x) + e* cos(x)
Now divide both sides by 2:
1 .
f e*cos(x) dx = E(eX sin(x) + eX cos(x)).
Simplifying a little and adding the constant of integration, our answer is thus

f eXcos(x) dx = ;ex (sin(x) + cos(x)) +C.

3. Let u = arctan(x) and dv = dx. Then du = 1/(1+x?)dx and v = x. Using Equation (12.20)

yields
X

1+x2 dx.

J arctan(x) dx = x arctan(x) —J

The integral on the right can be solved by substitution. Taking u = 1 +x2, we get du = 2x dx.
The integral then becomes

111
f arctan(x) dx = x arctan(x) — > f " du.

The integral on the right evaluates to In|u| 4+ C, which becomes In(1 +x?) +C, as we may
drop the absolute values as 1+ x? is always positive. Therefore, the answer is

1
farctan(x) ax :xarctan(x)—z In(1+x2)+C.

4. The integrand contains a composition of functions, leading us to think integration by parts
would be beneficial. Letting u = cos(In(x)), we have du = —sin(In(x)) /x dx, and conse-
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quently dv = dx and v = x. We then have
J cos(In(x)) dx = xcos(In(x)) +J sin(In(x)) dx

—cos(In(x))+xsin(In(x))—Jcos(ln(x)) ax.

So, we see that 1
cos(In(x)) dx = Ex(sin(ln(x)) +cos(In(x))) +C.

In general, integration by parts is useful for integrating certain products of functions, like fxex dx or
fx3 sin(x) dx. It is also useful for integrals involving logarithms and inverse trigonometric functions.

As stated before, integration is generally more difficult than differentiation. We are developing tools
for handling a large array of integrals, and experience will tell us when one tool is preferable/necessary
over another. For instance, consider the three similar-looking integrals

f xeX dx, f xeX* dx and J. xeX’ dx.

While the first is calculated easily with integration by parts, the second is best approached with sub-
stitution. Taking things one step further, the third integral has no answer in terms of elementary
functions, so none of the methods we learn in calculus will get us the exact answer.

12.4.3 Trigonometric integrals

Functions involving trigonometric functions are useful as they are good at describing periodic behavior.
Here, we describe several techniques for finding antiderivatives of certain combinations of trigonomet-
ric functions.

12.4.3.1 Integrals of the form J sin™(x) cos"(x) dx

We consider integrals of the form
fsinm(x) cos"(x) dx,

where m, n are nonnegative integers. Our strategy for evaluating these integrals is to use the identity
cos2(x) +sin?(x) = 1 to convert high powers of one trigonometric function into the other, leaving a
single sine or cosine term in the integrand. This is summarized below.

1. If mis odd, then m = 2k + 1 for some integer k. Rewrite

2k+1( k

sin™(x) = sin x) = sink(x) sin(x) = (sin?(x))¥ sin(x) = (1 — cos?(x))¥ sin(x).

Then
sin™(x) cos” (x) dx = J(l—cosz(x))ksin(x) cos”(x) dx _—J(l—uz)ku” du,

where u = cos(x) and du = —sin(x) dx.
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2. If nis odd, then using substitutions similar to that outlined above we have

fsinm(x)cos”(x) dx = f u™(1—u?)k du,

where u = sin(x) and du = cos(x) dx.

3. If both m and n are even, use Theorem 5.12 to reduce the degree of the integrand. Expand the
result and apply (1)-(3) again.

Let us check out how this all works in the following examples.

Example 12.20

Evaluate

J. sin®(x) cos®(x) dx.

Solution

The powers of both the sine and cosine terms are odd, therefore we can apply the techniques
above to either power. We choose to work with the power of the cosine term.

We rewrite cos®(x) as

cos?(x) 8(

0s°(x) cos(x)

C
(cos?(x )) cos(x)
(1
(

—sin?(x))* cos(x)

1—4sin?(x) + 6sin*(x) — 4 sin®(x) + sin®(x)) cos x.
We rewrite the integral as

f sin®(x) cos?(x) dx = f sin’(x)(1—4sin?(x) + 6 sin*(x) — 4 sin®(x) 4 sin®(x)) cos(x) dx.

Now substitute using u = sin(x) and du = cos(x) dx to arrive at the following integral
Juf’(l—4u2 +6u*—4ub +u®) du,
which can then be integrated:

J‘u5(1—4u2 +6ut—4u® +ud) du= | (u>—4u’ +6u°—4utt +ul3)du

I—'%

1 3 1 1
6 8 10 12 14
=—-U—zU"+=-Uu"—=u —u c
6 2 5 3 +14 -
1 1 3
6 in8 in10
= =sin°(x)— =sin®(x) + =sin~"(x) +...
= 5in®(x) — 5 sin®(x) + = sin*%(x)
1 1

12 14
— —sin"“(x)+ —sin~"(x) +C.
3 ()+14 (xX) +

The work we are doing here can be a bit tedious, but the skills developed (problem solving, algebraic
manipulation, etc.) are important. Nowadays problems of this sort are often solved using a computer
algebra system. Mathematica, for instance, integrates fsin5(x) cos?(x) dx as
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45cos(2x) 5cos(4x) 19cos(6x) cos(8x) cos(l0Ox) cos(1l2x) cos(1l4x)

X = - - - - - ’
9(x) 16384 8192 * 49152 - 4096 81920 24576 114688

which clearly has a different form than our answer in Example 12.20, which we now refer to as f(x).
Figure 12.14 shows a graph of f and g; they are clearly not equal, but they differ only by a constant.
That is g(x) = f(x) + C for some constant C. So we have two different antiderivatives of the same
function, meaning both answers are correct.

0.002}

-0.002} f(x)

Figure 12.14: A plot of f(x) and g(x) from Example 12.20.

Example 12.21

Evaluate

J-cos“(x)sinz(x) dx.

Solution

The powers of sine and cosine are both even, so we employ the power-reducing formulas and
algebra as follows.

2
o (25522 (=32

. ax
4 2

f 1+2cos(2x) +cos?(2x) 1—cos(2x)

— J %(1 + cos(2x) — cos?(2x) — cos3(2x)) dx

The cos(2x) term is easy to integrate. The cos?(2x) term is another trigonometric integral with an
even power, requiring the power-reducing formula again. The cos3(2x) term is a cosine function
with an odd power, requiring a substitution as done before. We integrate each in turn below.
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1
f cos(2x) dx = 5 sin(2x) +C.

5 1+ cos(4x) 1 1
fcos (2x) dx:ff dx:z(x+zsm(4x))+c.

Finally, we rewrite cos3(2x) as
cos3(2x) = cos?(2x) cos(2x) = (1 —sin?(2x)) cos(2x).

Letting u = sin(2x), we have du = 2 cos(2x) dx, hence

fcos3(2x) dx = | (1—sin?(2x))cos(2x) dx

2) du

1 3) c
u——u?|+
3

I
~ ~ N =

—

=

I

c

1
sin(2x) - 5 sin3(2x)) +C.
Putting all the pieces together, we have

j cos*(x)sin?(x) dx = f %(1 +cos(2x) — cos?(2x) — cos3(2x)) dx

= E[er % sin(2x) — %(x + % sin(4x))— ;(sin(Zx)— % sin3(2x))] +C

8

1[1 1 4 1 in3(2 ] c
= —| =X— —=sIn(4Xx)+ —=-sIn x)|+C.

gl 3%~ g Sin(x) + = sin®(2x)

12.4.3.2 Integrals of products of sines and cosines of differing period

Integrals of the form
fsin(mx)sin(nx) ax, fcos(mx)cos(nx) dx and fsin(mx) cos(nx) dx
are best approached by first applying the product to sum formulas (Theorem 5.13).

Example 12.22

Evaluate

Jsin(Sx)cos(Zx) ax.
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Solution

The application of the appropriate Simpson formula and subsequent integration are straightfor-
ward:

fsin(Sx) cos(2x) dx = f %[sin(3x) +sin(7x)] ax

1 1
=——c0s(3x)— —cos(7x)+C
= €0S(3X) — —cos(7x)

12.4.3.3 Integrals of the form ftanm(x) sec(x) dx.

When evaluating integrals of the form [ sin™(x)cos”(x) dx, the Pythagorean theorem allowed us to
convert even powers of sine into even powers of cosine, and vise-versa. The same basic strategy
applies to integrals of the form ftanm(x) sec(x) dx, albeit a bit more nuanced.

Basically, if the integrand can be manipulated to separate a sec?(x) term with the remaining secant
power even, or if a sec(x)tan(x) term can be separated with the remaining tan(x) power even, the
Pythagorean theorem can be employed, leading to a simple substitution. This strategy is outlined
below.

1. If nis even, then n = 2k for some integer k. Rewrite sec” x as
sec”(x) = sec®!(x) = sec?~2(x) sec?(x) = (1 +tan?(x))*Lsec?(x).
Then
J tan™(x)sec”(x) dx = f tan™(x)(1 +tan?(x))k"1sec?(x) dx = f u™(1+u?)k1 du,

where u = tan(x) and du = sec?(x) dx.

2. If mis odd, then m = 2k + 1 for some integer k. Rewrite tan”(x) sec”(x) as
tan™(x)sec”(x) = tan?*1(x)sec’(x) = tan?f(x)sec" ! (x)sec(x)tan(x)
= (sec?(x)—1)ksec™(x)sec(x)tan(x).
Then

j tan” (x) sec” (x) dx = f (sec?(x) — 1)¥ sec™ (x) sec(x) tan(x) dx = f (W2 —1)ku™1 du,

where u = sec(x) and du = sec(x) tan(x) dx.

3. If n is odd and m is even, then m = 2k for some integer k. Convert tan™(x) to (sec?(x)— 1)k,
Expand the new integrand and use Integration By Parts, with dv = sec?(x) dx.

4. If mis even and n = 0, rewrite tan™(x) as
tan™ (x) = tan™=?(x) tan?(x) = tan™"2(x)(sec?(x) — 1) = tan™?(x) sec?(x) — tan™~?(x).

So
ftan’"(x) dx:ftanm_z(x) sec?(x) dx — J.tanm_z(x) dx .

apply rule #1 apply ruIZ#4 again
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Example 12.23

Evaluate the following indefinite integrals:

1. Jtanz(x)sece(x) dx, 2. Jtan6(x) dx.

Solution

1. Since the power of secant is even, we use rule #1 above and pull out a sec?(x) in the
integrand. We convert the remaining powers of secant into powers of tangent.

ftanz(x) sec®(x) dx = f tan?(x) sec*(x) sec?(x) dx
= f tan?(x)(1 + tan?(x))* sec?(x) dx
Now substitute, with u = tan(x), with du = sec?(x) dx:
— f u?(1 +u?) du.

We leave the integration and subsequent substitution to the reader. The final answer is
1 3 2 5 1 7
= §tan (x)+§tc1n (x)+7tc1n (x)+C.

2. We employ rule #4 of the workflow outlined above.

J tan®(x) dx = f tan?(x) tan?(x) dx
= f tan*(x)(sec?(x)—1) dx

= f tan*(x)sec?(x) dx— J tan*(x) dx

Integrate the first integral with substitution, u = tan(x); integrate the second by employing
rule #4 again.

— %tan5(x) — f tan?(x) tan?(x) dx

- %tanf’(X)_ J tan?(x)(sec?(x) — 1) dx

= %tan5(x) — f tan?(x)sec?(x) dx + J tan?(x) dx

Again, use substitution for the first integral and rule #4 for the second.

= %tan5(x) — %tan3(x) +J (sec?(x)—1) dx
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1 1
= Etanf’(x)— 3 tan3(x) +tan(x)—x+C

These latter examples were admittedly long, with repeated applications of the same rule. Try to not
be overwhelmed by the length of the problem, but rather admire how robust this solution method is.
A trigonometric function of a high power can be systematically reduced to trigonometric functions of
lower powers until all antiderivatives can be computed.

12.4.4 Trigonometric substitution

We have since learned a number of integration techniques, yet we are still unable to evaluate an
integral like

3
f v/ 9—x2 dx. (12.21)
=3

without resorting to a geometric interpretation. This section introduces trigonometric substitution
(goniometrische substitutie), a method of integration that fills this gap in our integration skill. This
technique works on the same principle as substitution, by setting set x = f(0), where f is a trigonomet-
ric function, and then replacing x with f(6).

For what concerns the integral given by Equation (12.21), we begin by noting that 9 sin2(9) +9co0s?%(6) =
9, and hence 9cos2(6) = 9—9sin?(8). If we let x = 3sin(6), then 9—x2 = 9—9sin?(6) = 9cos?(0).

Setting x = 3sin(0) gives dx = 3cos(6) dB. We are almost ready to substitute. We also wish to change
our bounds of integration. The bound x = —3 corresponds to 8 = —m/2. Likewise, the bound of x =3 is
replaced by the bound 6 = m/2. Thus

3 /2
j\/9—X2dX:f 9—95sin?(6)(3cos(6)) d6
-3 —1/2
/2
f 34/9cos?(0)cos(8) db

—1/2

/2
= f 3|3 cos(6)| cos(6) db.

—1/2

On [—m/2,m/2], cos O is always positive, so we can drop the absolute value bars, then employ a power—
reducing formula:
m/2
= J 9cos?(6) do
—1/2
/2
9
= f 5(1 +c0s(20)) de
—m/2
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9 /2

= 5(9—# % sin(29))

—m/2

This matches our answer in Example 12.3.

Trigonometric substitution excels when dealing with integrands that contain va2—x2, vx2—a? and
vV x2 +a?. The following outlines the procedure for each case. Each right triangle acts as a reference
to help us understand the relationships between x and 6.

(a)

For integrands containing v a2 — x2:
Let x =asin(0), then dx = acos(8) db.
Thus 6 = arcsin(x/a), for —m/2 <6 < m/2.

On this interval, cos(8) > 0, so v a?—x2 = acos(9).

For integrands containing v/ x2 4 a?:
Let x = atan(@), then dx = asec?(0) d6.
Thus 6 = arctan(x/a), for—mn/2 <06 < m/2.

a + X
On this interval, sec(8) > 0, so vx2 +a? = asec(8).

For integrands containing v x2 — a?:
Let x = asec(0), then dx = asec(6)tan(0) db.

Thus 6 = arcsec(x/a). If x/a>1, then 0 <6 < mn/2; if
x/a<—1,thenm/2 <6< m.

We restrict our work to where x > a, so x/a>1, and
0 <6 <m/2. On this interval, tan6 > 0, so o

Vx2—a? =atan(6). a

Example 12.24

Evaluate

J\/4x2—1dx.

Solution

X

We start by rewriting the integrand so that it looks like v/ x2 — a2 for some value of a:

Vax2—1 = 4(x2—%)

-a
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2
1
=24|x2— (—) .
2
So we have a = 1/2, and following rule (c) from the above workflow, we set x = sec(6)/2, and
hence dx = sec(0)tan(8)/2 d6. We now rewrite the integral with these substitutions:

fde:JZ\xz—(%)z dx

—JZ Esecz(e)—l 1sec(e)tan(e) de
~)*\a 4\2

_ f \ %(secz(e)— 1)(sec(9)tan(9)) d6

— f \ %tqnz(e) (sec etan(e)) de

1
= f Etanz(e) sec(@) do
= %f (secz(e)— 1) sec(6) d6
= %f (sec®(6)—sec(6)) d6.

We can now integrate sec3(8) using integration by parts with dv = sec?(8) and u = sec(8), finding
its antiderivatives to be

J sec3(0) do = %(sec(e)tan(e) +1In |sec(6) +tan(9)| ) +C.

Thus

f Vax2—1dx = ;j (sec3(6)—sec(8)) do

1/1
=5 (E(sec(e) tan(6) +In|sec(6) +tan(e)| )— In|sec(o) +tan(6)|> +C

1
=2 (sec(6)tan(6)—In|sec(8) +tan(e)|) +C.
We are not yet done. Our original integral is given in terms of x, whereas our final answer,

as given, is in terms of 6. We need to rewrite our answer in terms of x. With a = 1/2, and
X =sec(0)/2, the reference triangle in rule (c) of the above workflow shows that

1/1 1
tand = x2——/—:2 x2—— and sec(8)=2x.
4/ 2 4

1
Z(sec(e) tan(6) —In|sec(6) +tan(9)|) +C

Thus

468
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1(2 21| x2 ! In|2 24| x? ! ) C
—| 2x x¢———In|2x Xé— — .
4 4 * 4 +
The final answer hence is:
1 1 1
Vax2—1 dx:—(4x x2———In[2x +2\[x2—— )+C.
4 4 4

It is important to realize that trigonometric substitution can be applied in many situations, even those
not of the form va2 —x2, vx2—a2 or v/x2 +a2. This is illustrated in the following example.

becomes

Example 12.25

Evaluate

1
dx
J (x2 +6x+10)2

Solution

We start by completing the square, then make the substitution u = x + 3, followed by the trigono-
metric substitution of u = tan(0):

1 1 1
J<x2+6><+10)2 dx:f (x+3)2+1) dx:f @z

Now make the substitution u = tan(8), du = sec?(0) dé:

1 1 .
J(u2+1)2 d“:J (tan2(e) 1 1)z o (9) 96

I L 6) de
‘f (sec2(9)2 "= ®

:Jcosz(e) de.

Applying a power reducing formula, we have

fcosz(e) dezf(%Jr%cos(ze)) de

1 1
:§9+Zsin(29)+C. (12.22)

We need to return to the variable x. As u = tan(6), 6 = arctan(u). Using the identity
sin(260) = 2sin(0) cos() and using the reference triangle found in rule (b) of the workflow above,
we have

1 1 u 1 1 u
—sin(20) = - =5 .
4 2V 11 vVi2+1 2ul+1

Finally, we return to x with the substitution u = x + 3. We start with the expression in Equa-
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tion (12.22):
19 s 20)+C L t 1 u C
—6+ —sin +C = —arctan(u) + = +
2 4 (26) 2 (W) 2u?+1
1 tan(x 4+ 3) X+3 c
= —arctan(x+3) + +C.
2 2(x2 +6x+10)

Stating our final result in one line:

f 1 J 1 . 3 X+3 c
X = —arctan(x+ 3) + +
(x2 +6x+10)2 2 ( ) 2(x2 +6x+10)

Finally, it should be mentioned that given a definite integral that can be evaluated using trigonometric
substitution, we could first evaluate the corresponding indefinite integral and then evaluate using the
original bounds. It is much more straightforward, though, to change the bounds as we substitute.

12.4.5 Partial fraction decomposition

Here we investigate the antiderivatives of rational functions. Recall that rational functions are functions

of the form f(x) = %, where p(x) and g(x) are polynomials and q(x) # 0.

J e
X2—1 X.

We do not have a simple formula for this. It can be evaluated using trigonometric substitution, but
note how the integral is easy to evaluate once we realize:

Consider the integral

1 1/2 1/2

x2—1 x—1 x+1

Thus

1 1/2 1/2
f 5 dx = —dx—f ax
xc—1 x—1 x+1

1|| 1| 1|| 11+C
=—In|x—1|—=In|x+1|+C.
2 2

Here, we will learn how to decompose fractions like

1
x2—1
We start with a rational function
p(x)
fxX)=——,
q(x)

where p and g do not have any common factors and the degree of p is less than the degree of q. It can
be shown that any polynomial, and hence q, can be factored into a product of real linear and irreducible
quadratic terms. The following workflow states how to decompose a rational function into partial
fractions (splitsing in partieelbreuken) as a sum of rational functions whose denominators are all of
lower degree than q.

1. Linear Terms: Let (x—a) divide g(x), where (x—a)" is the highest power of (x —a) that divides
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g(x). Then the decomposition of f(x) will contain the sum

A1 Ao Ap
x—a) x—a? T x=—ay

2. Quadratic Terms: Let (x? + bx + ¢) divide g(x), where (x? + bx + ¢)" is the highest power of
(x? + bx + ¢) that divides g(x). Then the decomposition of f(x) will contain the sum

Bix +C1 Box +C> Bnx +Chp
- b —————.
x24+bx+c  (x2+bx+c)? (X2 +bx+c)"

To find the coefficients A;, B; and C;:

1. Multiply all fractions by q(x), clearing the denominators. Collect like terms.

2. Equate the resulting coefficients of the powers of x and solve the resulting system of linear equa-
tions.

Example 12.26

Perform the partial fraction decomposition of

1
x2—1"

Solution

The denominator factors into two linear terms: x> —1 = (x—1)(x + 1). Thus

1 A B
+ )
x2—1 x—-1 x+1

To solve for A and B, first multiply through by x2—1 = (x—1)(x + 1):

Ax—1)(x+1) B(x—1)(x+1)
x—1 * x+1

=A(x+1)+B(x—1)
=Ax+A+Bx—B
=(A+B)x+ (A—B).
The next step is key. Note the equality we have:
1=(A+B)x+ (A—B).
For clarity’s sake, rewrite the left hand side as
Ox+1=(A+B)x+(A—B).

On the left, the coefficient of the x term is 0; on the right, it is (A + B). Since both sides are equal,
we must have that 0 = A + B.

Likewise, on the left, we have a constant term of 1; on the right, the constant term is (A—B).
Therefore we have 1 =A—B.
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We have two linear equations with two unknowns. This one is easy to solve by hand, leading to

A+B=0 - A=1/2
A—B=1 B=-1/2.
Thus
1 1/2  1/2
x2—1 x—1 x4+1

Clearly, it can become rather tedious to do a a partial fraction decomposition by hand if one is con-
fronted with a more complex rational fraction. Luckily, we can resort in such cases to Mathematica,
which can accomplish this with the command Apart. For instance, for what concerns the rational func-
tion in Example (12.26), we should proceed as follows.

In[211:= Apart[1l/(x~2 - 1), x] h
The second argument of the command Apart is nothing but the variable at stake.
1 1
outtati= 2 (-1+x) i 2 (1+x)
N Y
Example 12.27
Evaluate the following indefinite integrals:
1 2 +sin(x
1. J 5 dx, 3. J—() ax
(x—1)(x+2) 3+ cos(x)
x3
2. f X
(Xx—=5)(x+3)
Solution
1. We decompose the integrand as follows:
1 A B C
= + + :
(x—=1)(x+2)2 x—-1 x+2 (x+2)2
To solve for A, B and C, we multiply both sides by (x—1)(x 4 2)? and collect like terms:
1=A(x+2)2+B(x—1)(x+2)+C(x—1) (12.23)

= Ax? + 4AX +4A+Bx? + Bx—2B+Cx—C
= (A+B)x*+ (4A+B+C)x + (4A—2B—C).

We have
0x?>+0x+1=(A+B)x*>+(4A+B+C)x+ (4A—2B—C),
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leading to the equations

1

A= =
A+B = 0 91
4A+B+C = 0 o {B — —-
4A-2B-C = 1 ?
c = —=
\ 3

Thus

1 o [Le (Lo -3
f(x—l)(x+2)2 X_Jx—l ) X2 x+f(x+2)2 x

Each can be integrated with a simple substitution with u=x—1 or u = x + 2. The end result
is

1 1 1 1
dx=—-—In|x—-1|—=-In|x+2|+ —+C.
J (x—1)(x+2)2 9 | | 9 | | 3(x+2)

2. Since the degree of the numerator is now higher than the one of the denominator, we begin

by using polynomial division to reduce the degree of the numerator (see Section 4.1). Doing

so, we arrive at
x3 19x + 30
—_—— =X+ 2t .
(x—=5)(x+3) (Xx—=5)(x+3)

Consequently, we can rewrite the new rational function as:

19x+ 30 A B

+ ’
(x=5)(x+3) x—5 x+3

for appropriate values of A and B. Clearing denominators, we have

19x+30=A(x+3)+B(x—5)
= (A+B)x+(3A—5B).

This implies that:
125
19-A+B A=—"
< 27
.

30 = 3A—5B. B

We can now integrate:

x3 e — . 125/8 27/8 J
J(X—5)(X+3) X_f X s T X3 ™

X2 125 27
:7+2x+Tlnlx—5|+gln|x—l—3|+C.

3. We observe that we are confronted with a rational function of trigonometric functions, so we
first of all resort to the Weierstrass substitution. This leads to the following integral

5 t2+t+1 ot
f(t2+2)(t2+1) '
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which can be finished off using partial fraction decomposition. In this way, we get

5 t2+t+1 Jt—2 1—t ot t ot
= + .
(t2+2)(t2+1) t2+2 t2+1

Hence, we arrive at

zf Prtil e L oreran(2)-1 (t2+2) =y (2 +1)+cC
= —arctan{ —= |—=In(t*+2)+ =In(t“+1)+C,
(t2+2)(t2+1) V2 J2) 2 2

where t = tan(x/2).

We conclude our discussion of partial fraction decomposition with a final example that combines sev-
eral of the techniques we encountered earlier in this section.

Example 12.28

Evaluate

f 7x2 4+ 31x + 54
ax
(x+1)(x2+6x+11)

Solution

The degree of the numerator is less than the degree of the denominator, so we have:

7x2 +31x+ 54 A Bx+C
= + .
(x+1)(x2+6x+11) x+1 x2+6x+11

Now clear the denominators.

7x? +31x+54 =A(x?+6x+11)+ (Bx+C)(x+ 1)
= (A+B)x? + (6A+B+C)x + (11A +C).

This implies that:

7=A+B A=5
31=6A+B+C = B=2
54 =11A+C. C=-1.

Thus

7x? +31x + 54 5 2x—1
ax = + dx
(x+1)(x2+6x+11) x+1 x2+6x+11
The first term of this new integrand is easy to evaluate; it leads to a 5In|x + 1| term. The second
term is not hard, but takes several steps and uses substitution techniques.
2x—1
X2 +6x+11

This leads us to try substitution. Let u = x? +6x+ 11, so du = (2x + 6) dx. The numerator is 2x—1,
not 2x + 6, but we can get a 2x + 6 term in the numerator by adding 0 in the form of “7—7.”

The integrand has a quadratic in the denominator and a linear term in the numerator.

2x—1 2X—1+7-7
X2+ 6x+11 x2+6x+11
2X+6 7

T X216x+11 X246x+11°
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We can now integrate the first term with substitution, leading to a In|x2 + 6x + 11| term. The final
term can be integrated using arctangent. First, complete the square in the denominator:

7 7
x24+6x+11 (x+3)2+2°

An antiderivative of the latter term can be found using Equation (12.13) and substitution:

7 J 7 ¢ X+3 c
———— dx = —arctan +
x2+6x+11 /2 J2

Let’s start at the beginning and put all of the steps together.
7x? +31x +54 5 2x—1
dx = + ax
(x+1)(x2+6x+11) x+1 x2+6x+11
5 2x+6 7
= dx+ | ——— dx— | — dx
x+1 X2+ 6x+11 X2 +6x+11

7 X+3
:5In|x+1|+|n‘x2+6x+11‘——arctan +C
V2 V2

It is important to remember that one is not expected to see the final answer immediately after
seeing the problem. Rather, given the initial problem, we break it down into smaller problems that
are easier to solve. The final answer is a combination of the answers of the smaller problems.

Partial fraction decomposition is an important tool when dealing with rational functions. Note that at
its heart, it is a technique of algebra, not calculus, as we are rewriting a fraction in a new form. Still, it
is very useful in the realm of calculus as it lets us evaluate a certain set of complicated integrals.

f—(lnteg ral equations} N

In Chapter 9, we encountered differential equations, which are equations that relate some function with its derivatives.
Likewise, we can formulate integral equations, which are equations in which an unknown function appears under an
integral sign. Consider, for instance, the following integral equation:

1 1

1

_aX_ T a—x-1 lf —X

fx)=e 2+2e +2 (x+1)e™f(y)dy.
0

Its solution is f(x) = e™*, which can verified easily.

Just are the differential equations, integral equations are omnipresent in physics and engineering. For instance, Maxwell’'s
equations of electromagnetism can be formulated in integral form.
| J

12.5 Improper Integration

Consider the following definite integrals:

100 1 1000 1 10,000 1
. dx ~ 1.5608, . dx ~ 1.5698, . dx ~1.5707.
1+ x2 1+x2 1+x2
0 0 0

Notice how the integrand is 1/(1 +x2) in each integral. It is sketched in Figure 12.15. As the upper
bound gets larger, one would expect the area under the curve would also grow. While the definite
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integrals do increase in value as the upper bound grows, they are not increasing by much. In fact,
consider:

b
1 b
dx = arctan(x)| = arctan(b)—arctan(0) = arctan(b).
| = o] (b)~ arctan(0) (b)
0

As b — +oo, arctan(b) — m/2. Therefore it seems that as the upper bound b grows, the value of the
concerned definite integral approaches m/2 ~ 1.5708. This should strike the reader as being a bit
amazing: even though the curve extends to infinity, it has a finite amount of area underneath it.

When we defined the definite integral fff(x) dx in Definition 12.2, we made two stipulations:

1. The interval over which we integrated, [a, b], was a finite interval, and
2. The function f(x) was continuous on [a, b] (ensuring that the range of f was finite).
In this section we consider integrals where one or both of the above conditions do not hold. Such
integrals are called improper integrals (oneigenlijke integraal)
y

A
1.

1
Figure 12.15: Graphing f(x) = 152

12.5.1 Improper integrals with infinite bounds

We start with a definition of Improper integrals with infinite bounds.

Definition 12.6 (Improper integrals with infinite bounds)
1. Let f be a continuous function on [a, +oo[. Define

+00

b
Jf(x) dx to be blim Jf(x) ax.

— 400
a
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2. Let f be a continuous function on |— oo, b]. Define

b b
Jf(x) dx tobe aﬂrpooff(x) ax.

3. Let f be a continuous function on R. Let ¢ be any real number; define

C

+00 b
ff(x) dx tobe aﬂr_nooff(x) dx + blirrooff(x) ax.

a

An improper integral is said to converge if its corresponding limit exists (is finite); otherwise, it
diverges. The improper integral in part 3 converges if and only if both of its limits exist.

Example 12.29

Evaluate the following improper integrals:

+00 1 +col +00 1
1. — dx, 2. — dx, 3. ax.
x2 X 1+x2
1 1 —o0
Solution
1.
+00 b
1 _ 1 o —1p
t] | —dx = Ilim | —dx = lim — (12.24)
x2 b—+oo | X2 b—+400 Xx 11
1 1
:inToo%+l — 1. (12.25)

A graph of the area defined by this integral is given in Figure 12.16(a). In Mathematica, this
result can be checked as follows:

in[22]:= Integrate[1/x"2, x, 1, +Infinity]

out[22]= 1
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The limit does not exist, hence the concerned improper integral diverges. Compare the
graphs in Figures 12.16(a) and 12.16(b); notice how the graph of f(x) = 1/x is noticeably
larger. This difference is enough to cause the improper integral to diverge.

10 5

Figure 12.16: A graph of f(x) = 3> (a), f(x) = % (b) and f(x) = 1257 (c) in Example 12.29.

3. We will need to break this into two improper integrals and choose a value of c as in part 3 of
Definition 12.6. Any value of c is fine; we choose ¢ = 0.

+00 1 0 b

ax = dx+ lim
J1+x2 UL J b—>+00J1+X2
—00 a 0

0 b
lim arctan(x)| + lim <:1rctom(x))0

aq——00 ‘a b—-+400

= lim_ (arctan(0)—arctan(a)) + urroo (arctan(b)— arctan(0))

I
—
o
|
NI

A
NG
+
—
NI
|
o
N

Each limit exists, hence the original integral converges and has value:

+co

1
dx = m.
f 1+ x2

—00
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I A graph of the area defined by this integral is given in Figure 12.16(c).
Note that it is not uncommon for the limits resulting from improper integrals to need I’'H6pital’s rule.

12.5.2 Improper integrals with infinite range

We have just considered definite integrals where the interval of integration was infinite. We now
consider another type of improper integration, where the range of the integrand is infinite.

Definition 12.7 (Improper integrals with infinite range)
Let f(x) be a continuous function on [a,b] except at ¢, a < ¢ < b, where x = c is a vertical
asymptote of f. Define

—C
<

b t b
ff(x) dx = Itime(x) dx+!§imff(x) dx.
a a t

Example 12.30

Evaluate the following improper integrals:

1
aF3
0

§| -
N

—

X,| =
S

Solution

1. A graph of f(x) = 1/4/x is given in Figure 12.17(a). Notice that f has a vertical asymptote at
X = 0; in some sense, we are trying to compute the area of a region that has no top. Could

this have a finite value?
1 1
dx = lim
a—»O
0 a

1
= lim 2+4/x
Cl;»O a

EIH

- |im2(ﬁ—/a)

a—0
>
= 2

It turns out that the region does have a finite area even though it has no upper bound.

2. The function f(x) = 1/x2 has a vertical asymptote at x = 0, as shown in Figure 12.17(b), so
this integral is an improper integral. Let's eschew using limits for a moment and proceed
without recognizing the improper nature of the integral. This leads to:

1
1 11
—zdx:——

X x -1

-1
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Clearly the area in question is above the x-axis, yet the area is supposedly negative! Why
does our answer not match our intuition? To answer this, evaluate the integral using Defini-
tion 12.7.

Neither limit converges hence the original improper integral diverges. The nonsensical an-
swer we obtained by ignoring the improper nature of the integral is just that: nonsensical.

0.5 1. 1. 0.5 0.5

(@) (b)

Figure 12.17: A graph of f(x) = % (a) and f(x) = Xlz (b) in Example 12.30.

12.5.3 Convergence and divergence

Oftentimes we are interested in knowing simply whether or not an improper integral converges, and not
necessarily the value of a convergent integral. We provide here several tools that help determine the
convergence (convergentie) or divergence (divergentie) of improper integrals without integrating.

For instance, let us try to determine the values of p for which

+00
1

J. — dx
xP

1

converges.
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We begin by integrating and then evaluating the limit:
+00 b
1 1
f — dx= I|lim J—dx
xP b—+oo | xP
1 1

b
= lim Jx‘p dx (assume p # 1)
b—>+00

1

b

= lim

X—p+1|
b—+oo —p 41

1

1
= lim ——(b"P—11"P).
b—+00 1—p

When does this limit converge - i.e., when is this limit not co? This limit converges precisely when the
power of b is less than 0: when1—p<0=1<p.

xP

Example 12.29 that when p = 1 the integral also diverges. Figure 12.18 graphs y = 1/x with a dashed
line, along with graphs of y = 1/xP, p <1, and y = 1/x9, g > 1. Somehow the dashed line forms a
dividing line between convergence and divergence.

So, if p > 1, then ffoi dx converges. When p < 1 the improper integral diverges; we showed in

A similar result is proved in the exercises about improper integrals of the form

1

J 1
— dx,
xP

i.e. this improper integral converges when p < 1 and diverges when p > 1.

Note that we used the upper and lower bound of 1 just for convenience. It can be replaced by any a
where a > 0.

A basic technique in determining convergence of improper integrals is to compare an integrand whose
convergence is unknown to an integrand whose convergence is known. We often use integrands of the
form 1/xP to compare to as their convergence on certain intervals is known. This is described in the
following theorem.

Theorem 12.9 (Direct comparison test for improper integrals)
Let f and g be continuous on [a, +o [ where 0 < f(x) < g(x) for all x in [a, + .

+00 +00
1. If J g(x) dx converges, then ff(x) dx converges.
a
+00
2. If J f(x) dx diverges, then

a

g(x) dx diverges.

Q%g




12 INTEGRATION 482

Figure 12.18: Plotting functions of the form 1/xP”.

To prove Theorem 12.9, let us first of all prove the following theorem, which will need later on.

Theorem 12.10
Let F(t) be an increasing function on an interval |a, +oo[. Assume there exists M > 0 such that
F(t) <M for all t € |a,+oo[. Then the following limit exists:

L= lim F(t),

t—-+o00

and L <M.

Let S be the set of values of F(t) on Ja, +oo[:
S={yly=F(t), Vt>a}.

By assumption, S is bounded by M, thatis, y < Mforally € S, so S has a least upper bound (supremum).
Let L = sup(S). Then for all e > 0, L— € is not an upper bound for S, so there exists some yp > a such
that F(yo) > L—e€. Since F(t) is an increasing function, it follows that

L—e<F(yo)<F(t)<L

for t > yo. Therefore, |L—F(t)} < € for t > yg. Since € is an arbitrary positive number, this is precisely

what is needed to conclude that
L= lim F(t).

t—+ o0

Now to prove the first part of Theorem 12.9, consider the functions

t
G(t) :Jg(x) dax and F(t) = ff(x) ax

They are defined for t > a. Since f(x) > 0 and g(x) > 0, both F(t) and G(t) are increasing. Furthermore,

f(x) £ g(x) for all x> a and therefore,
F(t) < G(t) (12.26)

forall t > a.
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Our assumption now is that the following improper integral converges:

+00
M= f g(x) dx.

By definition, we have that M = tl_i,TooG(t)' Since G(t) is increasing, it holds that
G(t)<M

for all t > a, and it subsequently follows from Inequality (12.26) that
FitysM

forall t > a.

Since we have shown that F(t) is increasing and bounded by M, we can conclude that lim F(t) exists.

t—+00

Since this limit is equal to the desired improper integral

400

Jim F(o) = [ 700 ax.

a

this concludes our proof of the first part. Moreover, the second part follows immediately. Indeed,
assume that the first part is known to be true and that

diverges. Then

converges. Similarly, the second part implies the first.

There is also a counterpart of Theorem 12.9 for improper integrals with infinite range.

Theorem 12.11 (Direct comparison test for improper integrals with infinite range)
Let f and g be continuous on [a,xo [ where 0 < f(x) < g(x) for all x in [a, xo [.

X0 X0
1. If f g(x) dx converges, then f f(x) dx converges.
a a
X0 X0
2. Ifjf(x) dx diverges, then fg(x) dx diverges.
a

a
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Example 12.31

Determine the convergence of the following improper integrals.
+00 +00
2 1
1. e dx 2. —— dx
J X2 —x

1

Solution

1. The function f(x) = e~** does not have an antiderivative expressible in terms of elementary
functions, so we cannot integrate directly. It is comparable to g(x) = 1/x2, and as demon-
strated in Figure 12.19(a), e < 1/x2 on [1,+oo[. We know that f1+°°x_2 dx converges,
hence also the improper integral under consideration converges.

2. Note that for large values of x, we have
1 1 1
Vx2—x  VxZ x

We know that f;m x~1 dx diverges, so we seek to compare the original integrand to 1/x. It
is easy to see that when x > 0, we have

1 1
X=VxX2>Vx2—-x & —<—.
X Wx2—x

Using Theorem 12.9, we conclude that since f3+°° x~1 dx diverges, the concerned improper
integral diverges as well. Figure 12.19(b) illustrates this.

y
1
y
0.4
0.5 f(X)
0.2
. . . . - x
1 2 3 s X ! 2 3 4
(a) (b)

Figure 12.19: Graphs of f(x) = e~ and f(x)=1/x% (a) and of f(x) =1/vx2—x and f(x) = 1/x (b) in
Example 12.31.

Being able to compare unknown integrals to known integrals is very useful in determining conver-
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gence. However, some of our examples were a little too nice. For instance, it was convenient that

1<

X

1

V' x2—x

, but what if the —x were replaced with a +2x 45?7 That is, what can we say about the

convergence of

400

1
J—dx?
J VX2 +2x+5

We have

1
- >

X WXxZ{2x+t5

so we cannot use Theorem 12.9.

In cases like this (and many more) it is useful to employ the following theorem.

Theorem 12.12 (Limit comparison test for improper integrals)
Let f and g be continuous functions on [a, +oo [ where f(x) > 0 and g(x) > 0 for all x. If
f(x)

lim — =1L, O0<L < +o0,
x—=+0 g(x)

then
+o00 +00

ff(x) dx is convergent & f g(x) dx is convergent ,

a a
and equivalently,
+00 +00
f f(x) dx is divergent & f g(x) dx is divergent .
a a

We assume that L exists and is a positive finite number, and that the limit from a to +o0 of g converges;

we will show that the limit from a to +oo of f converges as well.

The definition of the limit tells us that, given the number € = L/2, there exists some M such that

L f(x) 3L
—=l—-€e<——<lL+€=—
2 g(x) 2

whenever x > M. So, for those values of x, we have that

3L

%g(x) <f(x) < ?g(x). (12.27)

Let us now break the following integral in question into two pieces:

+co0 M +00
Jf(x) dx = Jf(x) dx + ,\{ f(x) dx.

The first integral is of a continuous function on a closed, bounded interval, so we know that is finite.
The convergence of the second integral is concluded by the following, which we can do because of

Inequality (12.27):

+00 +00

3L
Jf(x) dx < > g(x) dx.
M M
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the last integral in this equation is given to converge (our assumption); therefore, by Theorem 12.9, the
integral on the left converges as well. Hence, we conclude, as desired, that the integral of f converges.

)

Proving the other direction can be done similarly, or simply by observing that if Xlirpoom = k exists
and is positive, then lim 9% _ 1 must also exist and be positive.
x——+00 f(X)

The limit comparison test can as well be given for unproper integrals with an infinite range.

Theorem 12.13 (Limit comparison test for improper integrals with infinite range)
Let f and g be continuous functions on [a, xo [ where f(x) > 0 and g(x) > 0 for all x. If

X
im M =L, O0<L<oo,
x=%0 g (x)

then

X0 X0
J f(x) dx is convergent < J g(x) dx is convergent,
a a

and equivalently,

X0 X0
ff(x) dx is divergent @fg(x) dx is divergent.
a a

Example 12.32

Determine the convergence of
+00

1
— dx.
J Vx24+2x+5

Solution

As x gets large, the denominator of the integrand will begin to behave much like y = x. So we

compare
1

VX2 +4+2x+5

to 1/x using Theorem 12.12:

1/Vx%2+2x+5 . b%

lim = |lim ————.
X—+00 1/x X2+ /%2 1 2x+ 5

The immediate evaluation of this limit returns oo /oo, an indeterminate form. Using I’'Hépital’s rule
seems appropriate, but in this situation, it does not lead to useful results.

The trouble is the square root function. To get rid of it, we employ the following fact: If )I(imcf(x) =1L,

then )I(in}f(x)z =L?. So we consider now the limit

. X2
lim ——.
X—=+00 x2 4 2x +5

This converges to 1, meaning the original limit also converged to 1. As x gets very large, the
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1 1
function ——— looks very much like —. Since we know that
VX2 +2x+5 X
+00
1
j — dx
X
3

diverges, by Theorem 12.12 we know that

+00
1
f .
J VX2 +2x+5
also diverges. Figure 12.20 graphs f(x) = 1/v/x2 +2x+5 and f(x) = 1/x, illustrating that as x
gets large, the functions become indistinguishable.

y
A

5 10 15 20

Figure 12.20: Graphing f(x) = ﬁ and f(x) = % in Example 12.32.
X X

This chapter has explored many integration techniques. All of them effectively have one goal in com-
mon: rewrite the integrand in a new way so that the integration step is easier to see and implement.
As stated before, integration is, in general, hard. It is easy to write a function whose antideriva-
tive is impossible to write in terms of elementary functions, and even when a function does have an
antiderivative expressible by elementary functions, it may be really hard to discover what it is. Math-
ematica, for instance, has approximately 1,000 pages of code dedicated to integration. Do not let this
difficulty discourage you. There is great value in learning integration techniques, as they allow one to
manipulate an integral in ways that can illuminate a concept for greater understanding. There is also
great value in understanding the need for good numerical techniques

The next chapter stresses the uses of integration. We generally do not find antiderivatives for an-
tiderivative’s sake, but rather because they provide the solution to some type of problem. The following
chapter introduces us to a number of different problems whose solution is provided by integration.
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12.6 EXxercises

12.6.1 Black-board exercises

1. Beschouw een partitie van het gegeven interval [a, b] in n deelintervallen met gelijke breedte
Ax; = (b—a)/n. Bepaal de boven- en onder Riemann som voor de gegeven functies en gegeven
waarde van n.

(@) fx)=x, [0,2], n=8 (d) f(x)=cos(x), 1[0,2m], n=4

(b) f(x)=In(x), [1,2], n=5 (e) fx)=x? [-3,3], n=6
1

(c) f(x)=sin(x), [0,1], n=6 M fx)=_. [L.9, n=4

2. Druk de gegeven limiet uit als een bepaalde integraal.

3. Alsa<benfiscontinuin [a, b], toon dan aan dat

b

f (Fx)—F)dx =0,

a
met f de gemiddelde waarde van f.

4. Bepaal de oppervlakte tussen de x-as en de curve beschreven door

X, als 0<x<1,

—2x+3, als 1<x<L2,
f(x)=

-1, als 2<x<3,

0, als x<0vx>3.

5. Toon aan dat

? n—1
In_Jsin”(x) dx_( p )In_z.
0

g
Bereken f sin?(x) dx.
0
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6. Bepaal de afgeleide van de onderstaande functies.

x3+x cos(6)

F(x) = Lt (f) F(6) = ox
@ F= [ < o- | 1=
2 sin(0)
0
w)ﬂm:fﬁdt X2
3 (9) F(X) 3xfe-ﬁdt
t
_ [ cosy) ’
(C) ( )_—JT; 1_|_y2 2
2 sin(x) (h) F(x) J(t+ 2)d
(d) F(t) —f dx X
X
t
x2 ex
(e) F(x):xzfsm(u) du (i) F(x) = f sin(t) dt
0 In{x)

7. De zogenaamde error-functie wordt onder meer gebruikt voor het beschrijven van grondwater-

stroming en wordt gegeven door
X

f(x) = f e~ du.
0

Echter, de integraal kan niet analytisch berekend worden en ook numerieke integratie is hier geen
evidentie. De functie kan evenwel benaderd worden met behulp van een Taylor-reeksontwikkeling.
Bepaal daartoe de MacLaurin-reeksontwikkeling van deze functie tot termen van de vierde orde.

8. Bepaal de onderstaande integralen.

9
1— /X |x—1]
_y2
w)f1+¢7dx m)JV4 X x—1dx
4

0

9. Bepaal de onderstaande integralen.

a exyl—xz—ldx (h)JIn(x+ x2+5) dx
V1—x2 1
2x +1 - X—
(i) J—dx
)J4x2+4x+3dx x?+x—6
\ sin(x) 4 (i J( x—1 )2 i
c fcos6(x) x ) x2—5x+6
f © x2+1
Jx2+2x+2
n(x)—cos(x) x+1
d -
J n(x) -+ cos( ) x M J(x2+1)3/2 dx
fcos2 1—4tan?(x) )J—
Vax—x?2
f (cos(x) +sin(x ))2 ") erXSinmX) o
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(0) J. sin%(x) cos?(x) dx

Cos(X) J
p)JZCOSZ(X)+Sin(X)—1 x

@ dx
a Jsinz(x)cos“(x)

10. Bepaal de onderstaande integralen.

(a) fsin(x) sinh(x) dx
o 3x2—4 J
( )f v X

X4
(C) f m ax

3—4x
(e) J—zdx
(1-2vx)

0 dx
f (tan(x) +1)sin?(x)

(9) J.xe2X dx

ax
Vx*+1

. . T[ . n d
(i) Jsm(z—x)sm(z +x) X

ax

V5=x+/5—x
(k) flen(\/l—x)dx

2x—1
(N f ax
2x+3

(m) J.sin(2x) cos(2x) dx

11. Onderzoek de convergentie van de onderstaande oneigenlijke integralen.

ing.

o

dx
sinh(x)

(s) | tanh3(x) dx

R‘%

ax
(n) fe’w—l
ax
(0) fx2+x+1

2x+3
(p) | ——— dx
(x2 +x +1)

o[

fx 24/x
1+1/_

(s) J arctan(+/x) dx

1/2
f 1+x ax

f ) cos?(x)

f V1t+eX
JZX cosh(x
Jsm

()f1+cos( X) +sin(x)

a
x
wIN
Q
X

8

2
xeX” dx

© o
o— + Lo h—
.
Q.
X

Geef ook een verklar-
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2

e
J 1+In
0
+

[ee)

ks

[oe]

0 [

[oe]

f‘/—erz
0

12. Bereken de onderstaande integralen.

+°°e_a" sin(x)
(a) f s —

X
0

ax

X

1o 1
b) J dx
In(x)
0

13. De Gamma-functie I'(x) wordt gedefinieerd door de oneigenlijke integraal

t*~let gt.

a) Toon aan dat de integraal convergeert voor x > 0.

c) ToonaandatT'(n+1)=n!voorn=0,1,2,...

d

Toon aan dat

14. Beschouw de midpointmethode over het interval [a, b], dat we opdelen in n deelintervallen als

Veronderstel dat

(a)
(b) Toon met behulp van partiéle integratie aan dat voor x > 0 geldt dat I'(x + 1)
(c)
(d)

2

+00 JT
f e ™ dx=—.
0 2

r(;):/ﬁ

a=X1 <Xz2<...

waarbij AX = Xj11—X; = b;—a voorallei=1,...

we

als

2=
en N -=|=—.
2 2

<Xp<Xpy1=b,

= xT(x).

,n+1. Met behulp van deze methode benaderen

b
S= ff(x)dx
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met m; = X”’% en is de totale fout op de benadering van S niets anders dan

E:|5—S(.

In wat volgt zullen we bewijzen dat het volgende geldt voor de bovengrens op de totale fout E

van de midpointbenadering:
B(b—a)3
E S - 5
24n2

met B een constante.
Vul aan in deze bundel waar aangegeven door middel van een stippellijn.

Deze totale fout kan niet groter zijn dan de som der benaderingsfouten E; voor de deelintervallen,
dus er geldt dat

ESiE(.

i=1
De lokale fout E; is niets anders dan de netto-oppervlakte tussen de raaklijn aan f in x = m; en de
grafiek van f over [x;, Xi+1]. Zij l(x) de lineaire benadering van f in x = m;, d.i.

dan is

waaruit volgt dat

B S (12.28)

In wezen is de lineaire functie ((x) niets anders dan de eerste-orde Taylor-veelterm in x = m; van
f, waarvoor we weten dat de restterm gegeven wordt door

voor z € [x;, Xi+1]. Definiéren we nu de bovengrens op |f”(z)| voor z € [x;, Xi+1] als B, dan vinden
we direct dat
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Bijgevolg vinden we als bovengrens voor het rechterlid van de ongelijkheid in Vergelijking (12.28)

.................................................................................................. (12.29)
Of meer expliciet na het uitrekenen van de voorkomende integraal in Vergelijking (12.29) en in
acht nemend dat x;;.1—m; = Az—x en xji—m; = —Az—x

12.6.2 Numerical integration

Het integreren van een functie is verre van evident. Hoewel in Secties 12.4 en 12.5 een arsenaal aan
integratietechnieken aangereikt werd, moeten we vaststellen dat deze technieken in veel gevallen niet
bruikbaar zijn. Doordat bijvoorbeeld de gezochte integraal gewoonweg niet als elementaire functie(s)
kan worden uitgedrukt. Nog lastiger wordt het als we zelfs niet beschikken over het functievoorschrift
van het integrandum, iets wat in de praktijk voortdurend voorkomt. Wat doen we in deze gevallen?
We benaderen de (bepaalde) integraal als een som van eenvoudige, berekenbare oppervlaktes (Sec-
tie 12.2.1). Deze manier van werken is conceptueel erg eenvoudig, maar is langdradig wanneer we
een benadering met een aanvaardbare accuraatheid willen bekomen. Daarom zullen we hier enkele
numerieke integratiemethoden implementeren en bestuderen in Matlab.
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12.6.2.1 De midpointmethode

In Voorbeeld 12.4 hebben we een bepaalde integraal benaderd door de oppervlaktes van een reeks
rechthoeken te sommeren. Voor de bepaalde integraal

b

S_Jf(x) ax,

a

bekwamen we deze reeks van n rechthoeken als volgt:
e deel het integratie-interval [a, b] op in een partitie {x1,X2,...,Xn, Xn+1}, waarbij

A=X1 <X2<-:+<Xp<Xpi1=Db;

e de lengte van het i-de subinterval [x;, X;+1] is de breedte van de i-de rechthoek;

e de hoogte van de i-de rechthoek wordt bepaald aan de hand van de linker-, rechter-, of mid-
pointregel.

Indien voor een partitie gekozen wordt waarbij de breedte van de subintervallen constant is (stel Ax)
en we de midpointregel toepassen, noemen we deze werkwijze de midpointmethode. De benadering
S van een integraal S, wordt dan als volgt berekend:

b
SZJf(X)dX o Axf(X1;—xz)-i-AXf(xz;X3)+-..+Axf(W)

D (Xi+Xi R
~ Afo(‘—‘“):s. (12.30)
i=1

2

Als we Vergelijking (12.30) herschrijven als

. n n AX ]

S—Afo(m;)—Afo(a+7+(l—1)Ax),
i=1 =1

met m; = x[+2¢ d.i. het midden van interval [x;, Xi+1], kunnen we de midpointmethode als volgt

vertalen naar uitvoerbare Matlab-code.

van f over een gegeven interval [a,b]
Inputs:
- f: integrandum (function handle)

- Sh: de benaderde integraal over [a,b] m.b.v. de midpointmethode
- oppervlakten: oppervlakte van de rechthoeken
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De functie plotNumeriekelntegratie(methode, f, interval, n) maakt een statische plot van # en de
benadering van de integraal over het interval [ ,b] met een opgegeven numerieke integratiemethode.
De inputs van deze functie worden als volgt gede nieerd:

methode: numerieke integratiemethode ( 'midpoint’ of 'trapezium' )
- f: integrandum
interval: integratie-interval [ ,b]

n: aantal deelintervallen (defaultwaarde is 10)

Vraag 1.a Test de functie midpoint voor de bepaalde integraal uit Voorbeeld 12.4

21 7
Si= #H(M)d' = (4" "?)d".

Vraag 1.b Maak met de functie  plotNumeriekelntegratie een plot van # (") en de benadering over
het interval [0,4] met n= 10.

Je zou Figuur 12.21 moeten bekomen.
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